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CHAPTER I

INTRODUCTION AND PRELIMINARY

A. BRIEF REVIEW

A microstrip device basically consists of a sandwich of two
parallel conducting layers separted by a single thin dielectric
substrate. The lower conductor functions as a ground plane, and the
upper conductor may be a simple resonant patch of regular shape, a
resonant dipole, or a monolithically printed array of patches or dipoles
and the associated feed network, The concept of microstrip antennas was
first proposed in this country a by Deschamps [1] and in France by
Gutton and Baissinot [2]. However, the main interest in the microstrip
antenna concept did not emerge unitl the early 1970's. It was probably
the need for conformal missile and spacecraft antennas that provided
this impetus together with the advance of printed circuit technology
hbased on the good selection of microstrip substrates that were becoming

available, The first practical antennas were developed in the early

1970's by Howell [3] and Munson [4]. Since then, extensive research
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:}‘ and development of microstrip antennas have led to diversified
applications and to the establishment of the topic as a separate entity

fi within the broad field of microwave antennas. The state of the art, in

both theory and experiment, is summarized in the books by Bahl and

ﬁ Bhartia 51, and James, et al. [6]. In particular, a recent special

issue of IEEE Transactions on Antennas and Propagation [7] was devoted

ﬁ to microstrip antennas and arrays. In this special issue, Carver and

H ' Mink [8] presented a comprehensive survey of the state of microstrip

[“ antenna element technology; while Mailloux, et al, [9] discussed

microstrip array design techniques.

Fi In its simplest configuration a microstrip antenna consists of a

Q}‘ thin metallic radiating patch bonded to a thin grounded dielectric

L.

substrate (Figure 1,1). The patch conductor typically has some regular

shape, for example, rectangular, circular or elliptical. The feed is
often a coaxial probe or a microstrip transmission line. Microstrip
antennas exhibit all the properties inherent to microstrip devices: a)
they are light weight, small size and low profile planar configurations
which can be made conformal; b) they are inexpensive to build and

ideally suited for large scale production by printed circuit techniques;

oscillators, amplifiers, phase shifters, etc., can be added directly to
the antenna suhstrate board); d) their feed lines and matching networks
can be fabricated simultaneously with the antenna structure so that

discontinuities due to connectors can be eliminated. All these

"""""""""""""""""""""""""""""""""""""""""""""""""""""""
....................................................................
..............................................

c) they are compatible with modular designs (solid state devices such as
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DIELECTRIC SUBSTRATE

Figure 1.1. Microstrip antenna configuration.

advantages compensate, at least in part, a number of drawbacks: a)
simple microstrip antennas have narrow bandwidths; b) their gain is

low; ¢) they have a small power handling capability; d) their dielectric
losses reduce the radiation efficiency; e) unwanted surface waves may
cause spurious radiation at the edges of the microstrip patch.

Most of the work in printed antenna theory and technology during
the last decade was for antennas operating in the UHF to microwave
frequency bands (300 MHz to 10 GHz). There are two somewhat successful
methods in calculating input impedance and radiation. One is the
transmission 1ine model proposed by Derneryd [10], and the other is

the cavity model used by Lo, et al. [11]. However, both methods fail
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to rigorously account for the surface waves on the antenna substrate and
for the mutual coupling between antenna elements. More recently, a
moment method solution to the microstrip strip antenna problem was
proposed by Newman and Tulyathan [12]. In [12], an integral equation
was formulated with the aid of image theory which accounted for the
presence of the ground plane; the field within the dielectric slab was
treated by an equivalent current., This method gives good results for
the input impedance, but requires an extremely accurate evaluation of
the elements of the impedance matrix.

The above studies all deal with planar substrates. From a
practical viewpoint it is also important to consider microstrip antennas
and arrays on curved surfaces, especially on portions of cylinders,
cones or spheres. Microstrip dipoles have indeed been considered for
cylindrical substrates and some preliminary results have been published
by Alexopoulos, et al. [13], who utilized the dyadic Green's function to
give the electric field produced by an electric dipole tangent to the
outer surface of the coating layer, Their results were restricted to
the far field and to the surface field., At about the same time, Fonseca
and Attilio [30] reported results on the radiation patterns of
microstrip wraparound antennas using a theory based upon the dyadic
Green's function for a dielectric coated cylinder. 1In both papers,
the Green's dyadic was constructed using the principle of scattering

superposition. The free space Green's dyadic employed was quoted from

........

v

foary
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Tai [19] who used a different method from the one adopted in this work
for constructing the free space Green's dyadic. However, the above

papers did not specifically address the mutual coupling problem,
B. STATEMENT OF PROBLEM

It is likely that there will be increasing interest in millimeter
wave systems and applications, such as imaging array antennas and
aircraft-to-satellite communications. Also of interest is the
development of complete monolithic systems which comhine antenna
elements or arrays on the same substrate as the integrated RF/IF
front-end detector and amplifier circuits. In these applications,
substrates are often thicker and have higher dielectric constants than

at lower frequencies. Consequently the electrical performance of these

antennas will bhe severely degraded due to surface waves or mutual
coupling. It is then evident that the analysis of mutual coupling
between microstrips is important in the design of antenna arrays,
!l especially if tight pattern control or low sidelobes are required.
This work considers the mutual coupling of two types of conformal

microstrip antennas:

-
1. microstrip patches 9n a dielectric slab
y (dielectric slab problem);
s
B 2. microstrip patches on a dielectric coated cylinder

(dielectric coated cylinder problem).
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C. OVERVIEW OF APPROACH

1. Integral Equation Formulation

The present approach is based on the Green's function method
which yields the total electric field E produced by the electric surface

currents Jg on the microstrip antenna elements (patches) as
E=E + [6+J ds (1.1)
S

where E' is the incident field excited by an impressed curent source Ji;
G is an appropriate dyadic Green's function which accounts for the

grounded substrate; and S is the surface of the microstrip patches.

Introducing the boundary condition on the microstrip patches

3>
x
m
[}
o

on S (1.2)

yields an electric field integral equation for JS; here n is the unit

vector normal to the surface of the microstrip patches.

2. Moment Method Solution

The integral Equation (1.2) is solved using the galerkin form of
the moment method where both the basis and testing functions are taken
as a surface patch dipnole mode. Thus the unknown current JS is expanded

in a set of N basis functions or modes

s e L e T s e T Tl e e
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- N
JS = Z InJ e (1.3)

where J, is the nth mode and I, is its unknown amplitude. Use of the
same set of functions as testing function leads to a system of lYinear

algebraic equations to be solved for the unknown Ip

rzyra = (vl , (1.4)

where [Z] is known as the impedance matrix with elements

I =- | E +J ds . (1.5)
3

Vo = 6 E + J. dv . (1.6)

and I are the elements of the current vector [1]. In Equations (1.5)
and (1.6), Em js the electric field due to the mode current 3m in the
presence of the dielectric substrate and ground plane; 31 is the
impressed (svurce) current; and S, Vi denote the surface, volume where

currents 3n. 51 exist, respectively. The expressions in (1.5) and (1.6)

were obtained using the reciprocity principle.
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3. Feed Modeling

Referring to Figure 1,2(a), a coaxial feed with terminal current I;

can be modeled by

[y |

= 21, 8(x-x.) 8(y-y, ) (1.7)

to represent a z-directed current source at the probe position (xo,yo),

To account for the probe self inductance, jXp (for eJmt time dependence)

can he added to the input impedance, where [8]

tan(/er kot) R (1.8)

™ N
Q

-~

with Z = /E;7E; ok, = w/E;E; » u, and € are the constitutive
parameters of free space (air); and t is the thickness of the dielectric
layer with dielectric constant €,
In Figure 1.2(b), a microstrip line feed with terminal current Ii
also can be modeled by using Equation (1.7) to represent an equivalent
2-directed current source at the point (xo,yo) where the feed line joins
the microstrip patch. Such a model furnishes good results for the
narrow feed lines that are in common use. Alexopoulos and Rana [14]
pointed out that the voltage term (1.6) should be modified by the factor
/W;7€ to account for edge effects of tne microstrip line of width W,

where W, is the effective width given by [8]
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Figure 1.2, Microstrip antenna feed modeling.
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l—e + 0.3 1 -
e W+ 0.262t

We = W +0.412 c - 0.758 | l W + 0.813t l t . (1.9)

In Equation (1.9), the effective dielectric constant

- —=1/2

Lot
ee = > + 2 ' 1+ W . (1.10)

e +1 e -1 I

The feed model (Figure 1.2(c)) can be thought of as a port with terminal

current 1; and voltage Vi as shown in Figure 1.2(d). Vi is the voltage

diye to surface current on the patch excited by the impressed 31,
4, Port Impedances

An M-element microstrip array can be modeled as an M-port whose
currents and voltages (defined in Figure 1.3) are related in matrix form

as

(2P (1P} = [vP) . (1.11)

One should differentiate between these port quantities (indicated by the
superscript p) and those associated with the moment method solution
defined in Equations (1.4) -(1.6). The moment method quantities depend
on the choice of the basis functions. The port quantities are the ones
of interest for determining input impedance and mutual coupling. The

relation between these quantities is now described.
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Figure 1.3. Voltages and currents of an M-port, jf;i

The input impedance at port m is given by s

- (1P]? . (1.12) 2]

where 3? is the impressed source current at port m and Em is the total —

electric field due to the N expansion modes 32, 2=1,2,...,N, excited by -

3? with the other ports open circuited. E™ can be expanded in terms f;i-

L

t: 2
of Ez which represent the electric fields due to expansion modes J, as ﬁf;]
]
s follows ]
<

1 -

............................
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L a o
Tl LN N

-
Iy &y . (1.13)

Substituting Equation (1.13) into (1.12) and applying (1.6) yields

VP (m)
N 2 m
P _ v m ,m p _
o -g I, Ve / [ImJ ) , (1.14)
=1 Im

where 12 are the expansion mode current amplitudes found from Equation
(1.4); Vg are the voltages induced at port m due to Ez; and Vg(m)

denotes the total voltage at port m due to Em.

The mutual impedance between port m and port n can be written as

m n

where Em is the total electric field due to N expansion modes,

. 1 . . .
Jz’ 2=1,2,...,N, excited by Ji with port n open circuited, |lsing

Equations (1.6) and (1.13) in (1.15) produces

N
M y"
A e , (1.16)
P 1P 1P
M n m

12
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where Vz are the voltages induced at port n due to Ez when 5? is set
to zero (open circuited); and Vﬁ(m) is the total voltage at port n due

to E". Via reciprocity,

P P
!! Zmn = an , for all m,n . (1.17)

It is common that the mutual coupling is measured in terms of

scattering parameters Spn. From the circuit theory for waveguiding

systems, one finds that the scattering matrix [S] is given by

(s] = (t2°1 + ™t Py -y, (1.18)

where [U] denotes the unity matrix.
From the above discussion it is seen that the port impedances are
" functions of the impedance matrix [Z]. Therefore, in order to analyze
the mutual coupling between microstrip antennas, it is essential to have

full knowledge of the self and mutual impedances between expansion modes

l! (i.e., the elements of [Z]). In this work, the major effort will be

focused on the computation of these parameters.

D. ORGANIZATION

A general solution to the dielectric slab problem is presented ir
Chapter II. Numerical results for specific examples are obtained and
compared with measurements, Expressions for the far zone radiation

fields are derived and details of the calculations are discussed.
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In Chapter III, the structure of free space dyadic Green's function

is characterized in terms of solenoidal and irrotational components. A

complete eigenfunction expansion for the free space dyadic Green's
function is obtained. This expansion is used in determining the dyadic
Green's function for a dielectric coated cylinder. Certain ﬁﬂ
orthogonality properties of the cylindrical vector wave functions [15]

are established in this chapter, 3

The dielectric coated cylinder problem is treated in Chapter IV,

Fields due to current sources at the dielectric-air interface can be
obtained in two ways. One approach relies on the technique used in
Chapter II. The other is based on the dyadic Green's function
determined in Chapter III. Use of these fields yields the impedance
matrix [Z]. The method of steepest descent is employed to derive an
expression for the far field of the currents on a patch,

The impedance expressions obtained in Chapter 1V are basically
eigenfunction solutions which converge slowly as the radius of cylinder
increases. In Chapter V, the Poisson summation formula is introduced to
convert the Green's dyadic function to an alternative representation
which is more rapidly converging, To illustrate this approach, a two

dimensional coupling problem is considered.

Concluding remarks are presented in Chapter VI, and various

. AR

analytical details are given in the appendices. ;i
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CHAPTER 1

MICROSTRIP PATCHES ON A GROUNDED PLANAR DIELECTRIC SLAB

A. INTRODUCTION

This chapter deals with mutual coupling between microstrip patches
printed on a grounded dielectric slab. For the calculation of impedance
matrix and voltage vector elements, the electric field due to an
expansion patch mode is needed. A general solution to the field
equations pertaining to the microstrip patch on a grounded dielectric
slab is presented in Section B, The surface current on the patch is
introduced only through the boundary conditions; this simplifies the
calculation, which is performed in the Fourier transform domain. The
solution is essentially of the Green's function type even though the
Green's function is not constructed explicitly. It is exact in the
sense that both the dielectric slab and the ground plane are taken into
account rigorously. Thus surface waves and coupling to adjacent antenna
elements can be accurately determined. An efficient evaluation of the

Green's function is also discussed. A moment method solution for mutual

15
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coupling between rectangular microstrip antenna elements is treated in
Section C. In Section D, numerical results of mutual coupling for two
antenna geometries are presented. These results are compared with
measurements., Finally, in Section E a general expression for the far
field of a patch mode using the method of stationary phase is derived.
An ejwt time dependence is assumed and suppressed throughout this

chapter.

B. THEORY AND GENERAL SOLUTION

The geometry under consideration is shown in Figure 2.1. The
grounded dielectric slab is infinite in extent in the x,y directions
with uniform thickness t. A microstrip patch is printed on the slab at
the dielectric-air interface with current density 35. Since both
regions 1 and 2 are source free, an arbitrary field that satisfies
Maxwell's equations can be constructed from two scalar functions [16]:
Ymi which generates a TM field and yei which generates a TE field, where
i =1 for the region inside the dielectric, and i = 2 for the region
outside the dielectric. Both scalar functions ypi and yei satisfy the

scalar wave equation:

|
2 2. ] Wpi(r)
(7 + k-i) , - =0 ’ (2.1)
._¢ei(r) |
r—erkg in region 1 (i = 1)
where k? =
Ky in region 2 (i = 2) ’
16
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DIELECTRIC SLAB GROUND PLANE

Figure 2.1. Geometry of a microstrip patch printed on a grounded
dielectric slab,

ko is the free space propagation constant, and €. is the relative

dielectric constant in region 1.

Upon multiplying Ymi and Vaj by the unit vector z, one can

construct the fields as [16]

. . 1 .
E;(r) = = x(zyg4(r)) + Jue; Vox ¥ ox (Zyp(r)) (2.2)
- . . - 1 -

Hy(F) = Tx(zgy (M) + 55 7 ¢ 7 (zvs ()} (2.3)




where € = €0 and €y = €0 The explicit form of the field components
can be found in Appendix A.

Since the structure is infinite in the x-y plane, the four scalar
wave functions can be represented in terms of their 2-D Fourier

transforms (or 2-D plane wave expansions) as follows:

in region 1

o] | ~
, Yy (1) 1 = wml(kx.ky)coskzl(z+t)

=j(k x+k y)
N B el B . e X 'dekxdky,
Va1 () | - b (kok Isink  (z4t)
(2.4)
in region 2 :f
(N
S |~ B - R
V"mz(r) 1 = | @ml(kx’ky) -Jkur 4
- = 412 ~ e dkxdk.y . (2.5)
_Ve2(r)_| - _‘”el(kx’ky)_ 1
h
where
2 2 2
kzl-\[erko-kx-ky yRek >0, Imk <0 ,
2 2 2
ko = \/ k0 - kx - ky » Re kz2 >0, Imk,, <0 ,
K = Ak + Ak , (2.6)
= X X y y + Zkz?_ .
and
Foeoxx 4 §y + 22 .
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It should be pointed out that using Equations (2.4,5) in (2.2,3) will
automatically satisfy:

a. the boundary condition at the conducting ground plane:

; X El =0 atz=-t ; (2.7)

b. the radiation condition as r = IFI + =; and

c. the criterion for the integrals in (2.5) to converge as z + =,

To specify the fields uniquely, the boundary conditions at the

dielectric-air interface must be satisfied:

N
Ll
o
<13
(e
~N
H
o
.

x (E, - E)) = (2.8)

and

"
il
-
N

n
o
.

z x (Hy - Hl) . (2.9)

Without loss of generality, the current density is assumed to be Fourier
transformable and to have both x and y components. Hence, 55 can he

written as

Jsxoy) = xdg, (xay) + yd (x,y)

1

. - =ik x+k y)
T LA k) + (ke Ky

dk dk .
Xy

(2.10)
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Use of Equations (2.8) and (2.9) will determine completely the '
spectral functions ¢ .,y .(i=1,2). The algebraic details are carried -
out in Appendix A, 0Only the field components are listed below: '
region 1 (- < x,y < ® , -t < z < 0) -
k k
f ] x z1 _ 7 -
E L (r) = — j Y

x1 wey € ml
=3k x+k y) ,
e Y sink L(z+t)dk dk , S
z Y (2.11) -

- ik _k -
O N I Ly '
ry = + ¥ e

yl - 1 wey€, Ml
_j(kxx+kyy) ' R
e s1nkzl(z+t)dkxdky . (2.12) ;
2.2 )

. k™ +k .
A - s y) . =3 (k x+k y) =
zl(r) = a2 {o{ wegt, bop © coskzl(z+t)dkxdky .
(2.13) -_'.
;
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1y
|75k & N
. _oa e Ma
He1(F) = 402 L{ wu Vo1 ~ k_y‘pml |
-3k x+k y)
n e X Yy coskzl(z+t)dkxdk ’
a y (2.14)
|75k & N
~— _ o l y 21 - ~ ‘
Hy1(r) = 42 L{ au_ Vo1 * Kx¥m l
- -3(k x+k y)
= e X y cosk . (z+t)dk_dk .
y (2.15)
and
; 2.2
. ) -j (kx+ky) . -j(kXX+ky‘Y) .
Hzl(r) = 4n? L{ Wiy Ye1 © Smkzl(“t)dkxdky ’
(2.16)
region 2 (-» < X,y < » , 0 < Z < =)
-
. — k k _ .
J o= ~ x 22 _ 'J(kxX+kyy+k22z)
o Ex2(r) T 4n? Il ky weZ ¥ we, m2 | © dkxdky ’
; : (2.17)
| fo.
-
‘.
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]

4n? :

kyk22 N

WEq m2 ‘ e

. Tk k "l
- J oo | xz2 ~ | -j(kxx+kyy+kz?
Mol = 302 {i I WH Yoz - kyq’mz Ie
J |_-kyk22 | jlk x+kyy+k
<y ( ¥ ~ T 22
Hyo(r) =32 If wn ez * Kytmz |
and
2 .2
Lo ) ek vk 2)
HZZ(F) = an? {i Wg ¢e2 € dkxdky
22
e e N I e R T

| -j(kxx+kyy+kzzz)

Mach e A arib e RN

z)

dkxdk

i T

y

(2.18)

dk _dk
XY

z)

"19)

(2.20)

dkxdky

[

(2.21)

(2.22)
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where

n

~ o ~ ~

Va1 = 4 o (kJ_ -kJ ,

"l T (2u?) Kedsy = ydsxd (2.23)

X y e

X
: _ wu°s1nkzlt _ .

Vo2 = & o LkJ. - kJ

®2 " (2?0 sy = ¥ysid ' (2.24)

X y e

~ Jerkzz - -
.- V1 = - o . TkJ _+kJd
= ml (k2+k2)p DX sx Ty sy] ’ (2.25)

X y m
| . kzls1nkzlt . _
i Voo = = 4 o Lk J__ +kJ
L 2 (Z+k2)p o * Kydsyl (2.26)
X y' m

n = ' )

e kZICOSkth + szzs1nkzlt . (2.27)
T and

O = ek, pc0sk t + jk  sink .t . (2.28)
r.

It should be pointed out that there are two dyadic Green's
R functions &! and 52, associated with the grounded dielectric slab. fil
- corresponds to the case where the field points are inside the substrate

(region 1), and 82 corresponds to the case where the field points are gi

_ ti'
. ¥

23




outside the substrate (region 2). Only six components of each dyadic

Green's function are considered since the surface current on a
microstrip patch has no z-component. These components can be identified

from Equations (2.11) through (2.13), and (2.17) through (2.19) as

follows:
: j o . .—._'
L T S 1 4= Jker
Gas(r,r ) = g {i gue(r,kx,ky) e dkxdky . (2.29)
where
i = 1,2
k = xkx + yky
Fn = ;X' + .;yl

~

XX + yy + 22

r =
a = X,¥,Z
B = X,y

and gLB are obtained from the electric field components which typically

have the following form:

~

(r,kx,ky).)sy(kx,ky)}dkxdky.

(2.30)
It follows from Equation (2,30) that the calculations of either

- T, ~ i
Eai (M) = ] Loy (kg Mg, (kyaky) + g0

electric fields or mutual impedances will invariably involve the

numerical evaluation of an integral of the form:

24




T = {:L '—"—D D — dkxdky . (2.31)

which, however, can be facilitated by changing to polar coordinates k,¢

where
k, = kcose . (2.32)
ky = ksing . (2.33)
Thus,
) ?n Fk,%)
r = | kdk . d¢ . .34
Ck 0 DeDm (2 )

The contour Cx for the k integration is shown in Figure 2.2. The branch
cuts for the branch points k = tko are defined by the analytic

properties that

a) Im ky,p = Im \/ks - k2 < 0 on the entire top Riemann sheet;

bh) Re k22 > 0 in the first and third quadrants; and

c) Re kzz < 0 in the second and fourth quadrants.

However, k = ¢ /E: ko are not branch points since the integrand is a

single-valued function of k21 =/erk§ -kz. The branch cuts are also

shown in Figure 2.2.
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Figure 2.2, Proper contours of integration and branch cuts in the
complex k plane,
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The denominator in the integrand of Equation (2.24) defines the ij
la surface wave modes. These modes are determined by the roots of ;ﬁ
"
..j
De =0 (for the TE waves) . (2.35) fj?
-
- D, = 0 (for the T™ waves) . (2.36)
. . 2 .2 . .
Substituting a = kotfer-l and 0 = t erko'k into Equations (2.35) and
(2.36) and rearranging terms yields, respectively,

-,

...... . Vs R K LI L TR A i
AL PV TR SV L I PO RPN N ST S W W sl S S N Sy P P Y. i . U W W T, VR AP TP WD N T4 WAV (s i T

\/az-oz + gcoto = 0 ’ (2.37)

2 2
- € \/a -0 + otanoc =0 . (2.38)

It can be demonstrated that if €, is real and €. * 1, the roots of
Equations (2.37) and (2.38) are real and located inside the segemnt
k, <k < /E:ko. If N,,N_represents the number of roots for the TE, T

case, respectively, then it can be shown that

' 0 , for a < n/2

N =
e
n , for (n-1/2)n < a < (n+1/2)n, n =1,2,3,.... R
and
Nm =n+tl , for nm < a < (n+l)n, n = 0,1,2,.... .
27
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[t is noted that the dominant TM mode has a zero cutoff frequency. For
lossy dielectric (Im . * 0), the roots just move off the .eal k-axis
with the form k = kr°jki’ ki > 0. The exact root locations can be
determined by using the Newton-Rhapson procedure,

For efficient numerical evaluation of the integral in Equation
(2.34), the new contour C_ is adopted by deforming C, (as shown in
Figure 2.2). The integration along C_ is performed by computing the
Cauchy value of the integrals around the surface wave poles. Assuming

the surface wave poles constitute an ordered set as {p , ¢=1,2,...,n},

R’!
Equation (2.34) can he written as

|7p,-8  p,-8 p -8 ® 21 F(k,4)
ro=ogim | lj + 2] et N4 l kdk | dé
DD
§+0+ I__ 0 p1+6 pn_1+6 pn+6 | 0 em
- ju Y [ dp Residue DD . (2.39)
%=1 o | \k-
_pl

em

In the case of lossy dielectric, the integrations from P,-8 to

Pyts, :=1,2,3,...,n, can be evaluated analytically without indenting

the contour C_. This is done by using two terms of a Taylor series

expansion of DeDm about pz, and by taking the value of the numerator

F(k,$) at k=p  throughout the interval.

- In actual numerical evaluation of (2.39), 8§ ~ 0.001/ky, and the
fﬂ3~ infinite integral is terminated at k ~ 150 kg,.
kif
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C. MUTUAL COUPLING ANALYSIS

In this section, the moment method solution for coupled microstrip
antennas is described. Without loss of generality, an array of M
arhitrarily oriented rectangular microstrip antenna patches on a
grounded dielectric slab is considered. When patch q is excited by a
vertical filament of constant current density 3? (a rough approximation
to a coaxial or microstrip line feed), an incident field E? is radiated.
Let the sum of the surface currents induced on each of the patches by 3?
be denoted as 32; this 52 radiates to produce the scattered field Eg.

On the surface of the patches, the total tangential electric field
vanishes so that

é Jp v (B4 Eds =0, (2.41)
where ST is an arbitrary non-zero test current (usually called the test
mode) located on the surface S of the microstrip patches (where 32
exists). DNenoting the electric field due to JT by ET’ and applying

the reciprocity theorem to the pair of fields (Eq; ET) and sources (Jg;

JT) yields

3. . g9 =(F .9
é Jy ES ds é ET JS ds .

Applying the reciprocity theorem once again to the pair of fields

s - 19. 3 ;
(Ei’ ET) and sources (Ji’ JT) yields

[ Iy By ds = [ E

14
. |]- dV
S ] T 1 d
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It then follows from the above reciprocity relations and Equation (2.41)

that

- (2.42

e 39 dv . )
i

The next step in the moment method solution is to expand 32 in

terms of known basis functions from a finite ordered set

= = 3% = o 29 . = = N =
2= {9 xJ .+ ydny.n LiooooN sa = 1,2,000,M, Ny + N, 40004 Ny = N,
Thus
- M N, -
W=7 1 1M J° , 2.43
5 «lna1 " n (2.43)

where J:, known as an expansion dipole mode, is the current density of

mode n on patch a, and Iﬁ(q) is its unknown current amplitude. In the

ii Galerkin scheme ST is chosen to be an element Jges which excites the
electric field Eg. Hence, inserting Equation (2.43) into (2.42) for all
- m and 8 yields
M N
Bn 8
I L INa)z = v(q) , a4
asl n=1 " mn m (2.44)
where m = 1,2,...,N3, 8 = 1,2,...,M, J Ng = N, and
B
Ba _ z8,-8a -a a,-a
200 = - é BT * ) * 9, (r,)ds , (2.45)

(r)dv (2.46)
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£,

=8a _ Ba Ba
mn (xmn’ymn’

0) is the displacement vector from the center of
mode m on patch B to the center of mode n on

patch «, and

Fﬁ = (x:,yﬁ,z) is the postion vector referenced to the center of
‘ mode m on patch 8.

In Equation (2.46), the excitation J? at port q is modeled as

39, =8 ° 8 B

J?(rm) = ZI?G(x-xm?)s(y'ymg)’ -@ < X,y < o, -t <z <0, where
(xﬁ?,yﬁ?,o) is the displacement vector from the center of mode m on
patch B8 to the feed location on patch q.

The geometry of modes m and n pertaining to the evaluation of

ZBa

mn and v:(q) is depicted in Figure 2.3, In terms of matrix notations,

(2.44) can be written as

[z1(1(q)] = [v(q)] R (2.47)
where
ath column block
- | | —
| I
R
| ZB(! * o o zsa |
| 11 lNG |
(zZ] = |- . o Bth row block
| 280 . . . j8a |
| NBI NBNa
I I
I |
_ | | _ (2.48)
31
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Figure 2.3. Geometry of patches and expansion dipole modes for the
- evaluation of Zgg’ and vg(q).
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(1(q)] = [II(Q)...INI(Q)l...‘I:(Q)...I:a(q)‘...Ill(q)...INM(q)] : :
(2.49) g

1 T

Via)) = [v1<q)...v;l(q)l... vf(q)...v;a(q>l,,, .1
{2.50)

In Equations (2.49) and (2.50), T denotes taking the transpose of the
row vector, Thus, the current amplitudes [I(q)] can be solved 3

algebraically by matrix inversion:

(i) = 1217 tv(q)] i (2.51)

As indicated in Equation (2.51), the current amplitudes will depend on
the feed location on patch q.

According to Equation (1.14), the input impedance at port q is

given by
- a a
L1 Ig(av () :
p a=l n=1 .
24 - - . 52) N
qq qy2 (2. .
(19) :
Similarly, it follows from Equation (1.16) that the mutual impedance .
hetween port q and port r is given by N
M N“" o a \
1) Ipt@ve)
p a=l n=1
qu = - a . (2.53)
1 i
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In Equations (2.52) and (2.53), it is understood that I? and 1: are the
terminal currents at port q and port r, respectively; the I:(q) are
obtained from (2.51); vx(q) and v:(r) are the voltages at port q and
port r, respectively, due to mode n on patch a excited by source 3? when
all other ports are open circuited.

To compute the moment method solution for mutual coupling between

revrvw

microstrip patch antennas, one needs to evaluate Equations (2.45) and

(2.46). As presented in Appendix B, the exact expressions for zB: and

vﬁ(q) are given by

] - kxkzz
Bx _ _ J_ T ~B ~8
mn T 4n2 j{ (kyweZ we ¢m2)cos¢
8 Kxkz2 | g
- (kxwez we, b 2)S1n¢mn | Inx
- S e KK —_
| (kyweZ * we, & 2)51n¢mn ¥ (kx¢e2 } we, ¥ 2)C°S¢ l Jny'
. Ba B
-3k x4k oy )
X"mn mn
- e Y dk dk . (2.54)
19 %
. I (k +k ) " kxx£?+kyy
vo(a) = - a2 {i o erkzl m1® sink,t dkxdky ,
(2.55)
34
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where
' " JerkzZ . 53 - |
t = - T +kJ
T 202y Cytmy ’ (2.56)
X y m
. wy_sink lt
) B 5 3B T (2.57)
= - ? I~
e2 (k3+k§)0e X my y mx
_ - kzls1nkzlt ” -
Voo = - (k.J_ +kdJd_) . 2.58
m2 (k2+k2)D x"“mx y“my ( )
X y m
- 8 B .
~B Yo X Jlk_x+k y)
I = 0" J,ﬁx(x.y)e <y dxdy , (2.59)
8 (]
Ym m
u s 8 .
~8 y X Jjlk x+k_y) o
i oo o= M om 38 (x,y)e X y dxdy , (2.60) o
L my 3 8 my >
- -ym -xm .‘.-
. y(! xa
o 7 n n ,a o
‘ Jnx' ja ja Jnxl(x l.y )
“Yn ~Xp

-j[x (kxcos¢mn+kysin¢mn) +y (-kxsin¢mn+kycos¢mn)]

e dx'dy

(2.61)
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y“ x> i
T n n a -
= r ] 1
Iny? ! fu Jnyr X'y -
Yn Xn
-3 X' k : o . ::::
. J{x'( xcos¢mn+kys1n¢mn) + y'( kx51n¢mn+kycos¢mn)]dx‘dy-
£
(2062) :‘.‘
¢mn is the angle between the x-axis of mode m and the x'-axis of mode n ..
(see Figure 2.3); 2x3 and Zy: are the widths of mode m on patch 8 in the o
x and y directions, respectively, and likewise, 2xx, Zy: are the widths s
of mode n on patch a in the x',y' directions. )
e
D. NUMERICAL EXAMPLES
Calculation of mutual coupling (S}2 parameter) between two W
identical coax-fed rectangular microstrip antennas is presented in £o
-
this section. Two antenna geometries (E-plane and H-plane coupling) are
considered. In both examples, the expansion set is chosen to be
- _ [ _ Cla _ _ N ..
= {Jn = XJnx. n=1l, a=1,2, Nl—Nz-l } . (2.63) -
n where
- - « i
o | s1n<(x1-|x|)
- T vasinexd Ix| < xos Iyl <y, a=1,2 g
- a 2yasinkx s ’ ’ s GT4, ~
x 0F (xy) = | DPsineN ! .
: 0 » Otherwise . (2.64) =
‘.:_' ‘
{. In Equation (2.64), the coordinates x, y are referenced to the center of
fﬂf the expansion dipole mode of length ZXT (along the direction of the
:;‘ current) and width Zy?, Furthermore, -
. —
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K = m , (2.65)
el el ot V7 _|
feq = o 2+, (1+ ;y—i' ) I . (2.66)

The choice of dipole mode currents J; and constant « is suggested by

[17]. 1t should be remarked that a current expansion mode in the set =

2t s R Ak e AY_ ¥ % _t.c . SmaA.t._c .o

is employed to approximate the even (dominant) current mode (Figure
2.4(a)) on a isolated microstrip patch at its first resonance. As
indicated in Equation (2.64), such an expansion mode is uniform in the
y-direction and piecewise sinusoidal in the x-direction. It is
understood, nevertheless, that at least one odd (attachment) mode
(Figure 2.4(b)) also exists simultaneously at resonance to account for
the discontinuity in current due to the feed. Summing the even and odd

modes will reasonably represent the true current distribution on the

patch (Figure 2.4(c)). For the sake of simplicity, however, only the
even dominant mode is considered in the calculations with the
understanding that at resonance only the even mode will dominate and

closely resemble the true current distribution.

. 1 2 1 2 . 1 2
Since x; = ST AR (identical patches), and le = le. = 0,
Equations (2.54) and (2.55) reduce to, respectively,

fem . - k k b
o J 2 |~ X222 ;
211 T 7 an2 {!, I (kywt’.‘? * we ¥n2)cos ) ']

- g

o [ ~B kxkzz - 7 5
_ " Weder T Tue, e LI | 4
- Ba Ba B j
3k x k¥ .) .

. J® x 11 y 11 _ 1

= Jlx' e dkxdky s a,B=1,2 (2.67) ._:
t ]
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- E
-
(a) EVEN (DOMINANT) (b)ODD (ATTACHMENT) (C) TRUE CURRENT ’
g MODE MODE )

Figure 2.4. Current distribution on an isolated microstrip patch at

resonance. -
~B "
a k k_,J d
-11 ® X 22 1x —J(k X8a+k B(!)
vBla) = (| ——— o KA
1 472ue - K;1%m zl xy’ "3
a,8=1,2 , ‘]
(2.68)
.
where od
. muos1nkzlt -8 )
Von = = oo k.J ’ (2.69) =
e2 (k2+k2)D ylx - =
X y' e
C 7
- zls1nkzlt i ’
me T T (x%+k2)D “<J1x (2.70) 3
x y'’'m
s 1 1 .
e Yy X J(k x+k y)
oS 35’ - PRy e Y dxdy
o X S
e Y1 X
' . . . (2.71)
: 2<(coskxx1 - cosle) sinkyyl
= . g=1,2
. 1, 2 2 ’ ’
STNeX) (¢ =k ) kyyi
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2 2

y X
Ta 1 1 ,a
Jlx' = ! f Jlx(x.)')

w2 2

Y1 X1

-jix(k_cos¢,,+k sin + y(-k_sin
. [x(kycosey vk singy)) + yl(-k, tkycosy )l
a=1,?2 ,
(2.72)
8a B Ba Ba aa aa

(xlf’ .Ylf) = (xll, yll) + (xlf! ylf) 9’ 0,6-1,2 . (2.73)

It should be noted that (xg:, y??) is determined from Equation (2.68) by

enforcing the condition that vf(a)/l? is a real quantity. This
corresponds to the condition that the isolated microstrip antenna is at
resonance.

Example 1: E-plane coupling

The antenna geometry is shown in Figure 2.5. 1In this special case,

X = x = 3.275 cn

y{ = yf = 5,285 ¢m

xp = Xo2 = - 1.115 e
1 22

Yif T ¥yt Ocm
=0

Ba -
Y * 0 , B8,x=1,2

frequency = 1417 MHz
t = 0,1575 cm, and
€. = 2.5 .
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o 0.5 1.0 1.5
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Figure 2.5. FE-plane coupling for identical microstrips. -




It can be deduced from Equation (2.72) that STx' = JTx' a=1,2. Also,

Ba _
1f ~

(2,73) implies that y 0, a,B=1,2. Thus Equations (2.67) and (2.68)

reduce to

Jn - .. Ba

Ba _ 0 ~B ~a -kaxll
In -~ an2k, /] 0y (K, sk 137,075 dk dk , a,8:1,2

-0

(2.78)

where
sink_.t
Q, (k ,k ) ="" z {k_.( k2 kz)cosk t + jk (k2 kz) ink_.t}
xx'"x*"y’ " DpDg 22 %0 x 21% T I KRS M
(2.76)
"o = . (2.77)
As mentioned earlier, the infinite kx, ky integrations can b
facilitated by converting to polar coordinates k and o defined hy
2 2
kK = J—;; + ky , (2.78)
o = tan"Y(k /K ) (2.79)
Yy x ’ "
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Also, the even and odd properties of the integrands can be used to

reduce the domain of the o integration from [0,2n] to [0,n/2].

Fquations (2.74) and (2.75) can then be written as

jr10 n/2
Ba _ bod ~8 ~a Ba )
117 kg g é 0, (ks0)Jy Jy, cosk x ) kdodk , a,B:1,2
(2.80)
e ]
8 i 7}/2 kxkz2 Baes
vila) = 3 sink_.t sink x-od.  kdodk ,a,B=1,2 .
1 ko 00 X21Pm z1 x"1f71x
(2.81)

Equations (2.80) and (2.81) are the final forms used for computing the

impedance matrix and voltage vector elements.

Example 2: H-plane coupling

Figure 2.6 shows an antenna configuration for studying the H-plane

coupling. In this case,

1 _ .2

Xp = X = 3.275 ¢cm
1

Yy =¥ ¢ 5.285 cm
2 s e
11 _ 22

YiF 5 Yyf ¢ 0 cm
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- € - 2.5 6.55cm
L. | 3
_20f- t=0.1575cm R
- f=1417 MHz ~
- Ag= 2117 cm 10.57em| 57
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~2s} Y ‘
C S
[ ,
=30 \
[ =
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=_135
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Figure 2.6, H-plane coupling for identical microstrips.
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w e w

¢11=0

B8a
*11

L}

0, «,8=1,2

frequency = 1417 MHz

M

= 0.1575 cm, and

As noted in Example 1, j?x = 3; , a=1,2. Moreover, it follows from i

aa . >
(x

1f° ylf) 1F° yll). a,8=1,2. Then Equations <
(2.67) and (2.68) can be simplified to

Equation (2.73) that (x

Jn Ba

Ba __ 0 ® Jkyy11
2] = Ak, {i Q,, (K, sk )J1x 1x ® dk, Ak,  0,851,2 .
(2.82) (1

[+ ) .

8 Ii"o o kxkzz ~8 =ik x1f+kyy =
vila) = - 4k, {l k710 i @ sink .t dkxdky .
2.83 "
a,B=1,2 .( ) "

Introducing polar coordinates k and ¢ in Equations (2.82) and (2.83) to

obtain
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[

Jn
Ba (o] o w/2 ~8 ~a Ba
21, w2k, g g Qxx(k,c)Jli1x coskyy11 kdodk , a«,8=1,2 ,
(2.84)
j1e
Pi% w2 Nk L
vB(a) =2 I 3% sink t sink_x,ccosk o kd odk
R T O S T W P3| xX1£°05% Y11 g
a,B=1,2 .
(2.85)

From Figures 2.5 and 2.6, one can observe that the E-plane coupling
is larger than the H-plane coupling. This is due to a stronger surface
wave which is excited for the E-plane configuration. 1[n general, the
magnitude of the scattering parameter sj2 is seen to have good agreement
with measurements by Jedlicka, et al. [18]. For the data, the isolated
microstrips were resonant with 50-2 resistance. This occured at
1417 MHz for the computations, and at 1410 MHz for the measurements. It
is noted that the percentage tolerance on the substrate permittivity and
patch size are of the same order of magnitude as the antenna bandwidth
(typically a few percent). Such an error causes a shift in resonant
frequency, hbut it is found that the change in the calculated terminal

impedance is negligible,
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E. FAR ZONE RADIATION FIELD

The radiation field refers to the electric field in region 2 when
the field point is significantly removed from the source. From
Equations (2.17) to (2.19), it can be shown that the electric field may

be expressed by the 2-D Fourier transform as follows:

- - 1 @ -jk-r‘
Ez(r) = a2 .i Ez(kx’ky) e dkxdky , (2.86)
where

Ko=xk, +yk +7k ., k.= Ko-k’-k® , Rek.. >0, Imk_. <0
X y z2° "z2 o x y ° 2?2 i z2 i

r = ;x + }y + 22 y =@ < X,y <o 0<zZ< = (region 2),

g - A~ A A

2ok ) = XE (K, ok )+ yE H(K )+ 2E o0k K ),
E _ 2

~ 2 ~
x?2 gxx(kx’ky)dsx * gxy(kx’ky)dsy ’

m2Q

]
7=}
[}
—
»
-
»
N
2
+
‘<@m
<
——
~
b
-
x
<
——
<2
w

i
]
o)
NN
>
—
»x
x
-
»
S
[
+
o]
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Jnos1nkzlt

2
Ixx®xoky) = = Ty o

2 2 2 2 .
o [(erko-kx)kzzcoskzlt + J(ko-kx)kzls1nkzlt] R

FAYRAg

z1

2 |
k = . .
gxy( x’ky) koPeDr k,pCO8k  t + jk . sink .t ,

- Jnokxkysmk t _ -

. R
5 i AR

—~
CA N

Jnos1nkzlt

. 2 Rt
8 9, keky) = =g

oe"m

2 2 .
cosk_.t + J(k y)k s1nkzlt] ,

2 z1

2 .2
[(epkg-k )k, i

SRATAIN AR N AR, & | e

4 2

[2FR
=3
o N

k sink 1t i

CJ"<

2
97x (kyoky)

e d
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&
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2

) -Jﬂo kxsinkzlt
gzy(kx’ky) = De ’

D = » -

e kzICOSkzlt + Jk2251nkz1t ,
De = erkzzcoskzlt + szls1nkzlt .

Since 9 EZ(F) = 0 in region 2, the divergence of Equation (2.86)

gives

7B Tl e e e a0 (2.87)

Thus only two components of E2 are independent. Then E? can bhe
expressed by

= A~ A -~ 1 ~ ~

Ep = xE , + yEy2 -2 Kr7 (kEp ¥ kyEyz) . (2.88)

As shown in Appendix C, the integral in Equation (2.86) can be
evaluated asymptotically by the method of stationary phase as rs=,
Using Equation (2.88) and (C.15) in (2.86) yields the far zone radiation

field as follows:
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e"jkor
E(r) ~J =7 k ,c0S9 [xExz(kx,ky) + yEyZ(kx’ky)

~ 1
-2 I_— 2(k Lk ) + k E 2(k WK )) ' R
(k k)

z2 X
(k xo’kyo)

roaow (2.89)

where (k = i i i i i
( xo’kyo) (kos1n9cos¢, k051n951n¢) is the stationary phase

point, kzz = kocose, and 6 and ¢ are the usual angle variables in

spherical coordinates.

o
) In terms of spherical components, Equation (2.89) becomes
_ -Jkor
N - _ e ~
- E(FY) ~ ik ———— e

: (r) ~ .k, ar {@[cos¢ Eyz(kxo yo) sing E 5(k, 0, yo)]coss
! l + 8[cos) Exa(kyorkyo) * STNO E ok, Sk O]} . (2.90)
F .
1 Once the current density JS on the microstrip antenna is determined, the
L s . . .
S radiation field can be obtained from Equation (2.90).
¢
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CHAPTER III

DYADIC GREEN'S FUNCTIONS

A. INTRODUCTION

For many electromagnetic problems, the eigenfunction expansion
method provides the most useful solution to the (electric or magnetic)
field; the boundary conditions of the problem are readily incorporated
into the solution. For waveguides and cavities, in particular, the
eigenfunction expansion method is usually the preferable way to solve
problems involving current sources and wave scattering. The whole
procedure for finding the eigenfunction expansion of the electric field
can be organized in a systematic way by introducing the electric dyadic
Green's function or simply Green's dyadic (Ee) which is discussed in
this chapter.

The eigenfunction expansion of Ee had been a subject of
misconception and controversy in the past. The difficulty centered
about the completeness of the expansion. Initially, Tai developed

expansions for the dyadic Green's functions in his book [19] which
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A

included only the M and N functions which are the solenoidal

(transverse) Hansen vector wave functions., After the publication of his
book, Tai noted that his expansions were incomplete in the source region
and discovered the need for the irrotational (longitudinal) Hansen
vector wave function [. In his subsequent amendments [20,21], Tai
indicated how the complete expansions of the dyadic Green's functions
could be obtained via the method of Em, where Em is the magnetic dyadic
Green's function with zero divergence and may be constructed in terms of
only the solenoidal eigenfunctions. Ee is then obtained from Vv x Em-
together with a dyadic delta function term at the source point. Thus,
he avoided having to deal with the L functions explicitly. About the
same time, Collin [22] discovered independently the lack of completeness
for the £ and H modes in fhe same waveguide problem considered by Tai.
Later, Rahmat-Samii [23] modified Tai's method of Em via the use of
symbolic functions (distributions). More recently, Collin [24]
successfully unified the various results on the dyadic Green's functions
as presented by different authors. Various representations for the
Green's dyadic were presented and their inter-relationships pointed out.
Most recently, Pathak [25] described a relatively simple method for
constructing a complete expansion of Ee in a compact and useful form
which contains only the solenoidal type eigenfunctions plus an explicit
dyadic delta function term that accounts for completeness at the source

point.
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A main feature of this chapter is on the eigenfunction expansion of

Ee in free space, The present approach follows that of [25] in
obtaining the source conditions that govern the Green's dyadic in free
space. It then conjectures that the free space Green's dyadic can be
expressed as the sum of a solenoidal component and an irrotational
component which is allowed to be a symbolic function. The solenoidal
component, as usual, is expanded in terms of the ﬁ and ﬂ functions; and
the irrotational Component is deduced from the differential equation
governing Ee. 0f course, the irrotational component turns out to be in
the form of a dyadic delta function as in [20,21] and [25]. Making use
of the free space Green's dyadic and the principle of scattering
superposition, the dyadic Green's function for an infinite dielectric
coated conducting cylinder can be determined without additional
analytical difficulty,

The remainder of this chapter is organized as follows. Section B
reviews some basic relations governing the electric field (E), the
magnetic field (ﬁ), Ee and Em. Only E and Ee- however, will be used
in the chapters that follow. The free space Green's dyadic is
characterized and expanded in Section C which also establishes the
orthogonality of the M and N functions in cylindrical coordinates. In
Section D, the Green's dyadic for a dielectric coated cylinder is
constructed. Finally, Section E expands the Green's dyadic into

component form from which the electric field is easily identified when

the source is known.
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lg In the remaining portion of this report, all time-harmonic
quantities are assumed to have an e-Jut time dependence which will be
:t: suppressed throughout,
.- - - - =
B B. SOME BASIC RELATIONS GOVERNING E, H, Gg AND G
The electromagnetic fields E and H excited by the electric current
i source J in a region V of linear, isotropic and time-invariant medium
- satisfy the Maxwell's equations:
-
ke - -
jwuH(r) = 7 x E(F) , (3.1)
Ny k2E(r) = juu(7 x H(F) - J(F)) , (3.2)
b v« H(Fr) =0 R (3.3)
‘E and
. - o(r) Jou o _
i.:. 7 . E(F) = c = = T o (—k—z— J(r)) . (3.4)
e
to. where r € V, u and ¢ denote the constitutive parameters of region V;
- k2 = wlue; and p is the charge density associated with J. One can
(- verify from Equations (3.1) and (3.2) that E and H satisfy the following
g; differential equations, respectively:
- 53
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N
vx 9x E(F) - kZE(F) = jwu\-](r-‘) . (3.5) =
and ﬁj
Vx Vx H(r) - kzﬁ(F) =V x 5(?) . (3.6) &
‘.-.-:
)
The electric Green's dyadic Gg for region V is defined as the <
-1
solution of the vector wave equation: o
-
!..4
VX VxGy(r,r') - k26 (r,r') = 18(r-r") , (3.7) |
o
and the boundary conditions pertaining to V, where ;,;' ¢ V denote, :
respectively, the field observation and the point source locations; 1 is ij
the unit dyad; and G(F-F') is the Dirac delta function. It can be
proved that, for region V, there exists another dyadic function known as v
the magnetic Green's dyadic, denoted by ém, which satisfies the "
differential equation: -
9x 7x Em(F,F') - kZEm(F,F') =7 x 16(F-r') (3.8)
together with the associated boundary conditions, and is related to ae -
as -
Gm(r‘,r') =7 x Ge(r-',r') . (3.9) -l
e
-
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From Equations (3.7) and (3.9) it can be readily verified that

K26, (F,7") = 7 x 6 (F.F') - T8(7-i") )

!! It is also clear from (3.9) and (3.10) that

- and

Ve G (F,F') = -9« [T8(F-F')/K2] = - Vo(F-F')/k2

(3.10)

(3.11)

. (3.12)

Comparing Equations (3.1) - (3.4) with (3.9) - (3.12), it is seen that

Ge, am/jmu and is(;-F')/jwu represent the dyadic analogs of E. H and 3.

respectively. It may be noted that relations (3.9) and

(3.10) must be

'i modified should r and r' be located in different regions each with

distinct permeability. This will be discussed further in Section D.

It is of interest to consider that E and Ge are solutions in region

!! V to the differential Equations (3.5) and (3.7), respectively,

pertaining to the geometry depicted in Figure 3.1. Thus E and ée must

satisfy the following boundary conditions:

on the perfect conducting surface S,

nxEF | =0 ,

S
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Figure 3.1, Region V, bounded by a perfect conducting surface S and

a surface S, at infinity, contains an electric source J.
V can be inhomogeneous.

on the surface S, at infinity,

:E: r i 7 X E(F) - jk; X E(F) =0 s (3.15)
I~ = .. - =
:2: r \ 7 X Ge(r,r') - jkr x Ge(r,r') i =0 . (3.16)

The latter set of conditions is commonly known as the radiation
condition, The region V, bounded by surfaces S and S, contains the
source J and can be inhomogeneous. Next employing the Green's theorem
for the pair £ and Ee over V, and enforcing the appropriate boundary

conditions on E and ée yield
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E(7) - g Bo(Fuf™) « J(F)av", 7 eV . (3.17)

From (3.1) and (3.9), it can be verified that

HE) = [ GyFa) « (v, £, e v : (3.18)

In particular, if J(F“) is an arbitrarily oriented electric point source

of strength Be located at r"=r', i.e.,

J(r") = p 8(r"-r') , (3.19)
then (3.17) and (3.18) will reduce to

E(F) = juu G(F,F') - B, (3.20)

and

H(F) = 6 (F.F') « : (3.21)




C. EIGENFUNCTION EXPANSION OF THE FREE SPACE GREEN'S DYADIC

The analysis of mutual coupling between microstrip patch antennas
involves only the electric field and electric current, It is sufficient
to consider the electric Green's dyadic (EE(F,F')) because, as observed
in the previous section, ;e(F,F') is directly related to the electric
field due to an electric current point source. The mangetic Green's
dyadic Em(;,F')), if needed, can be obtained by taking the curl of
Be(rar').

This section is devoted to the eigenfunction expansion of the free
space Greeen's dyadic which will be denoted by EO(F,F‘). Without loss
of generality, it is assumed that the electromagnetic problem under
consideration can be formulated in a general orthogonal curvilinear
coordinate system (ul, Uss u3) with corresponding metric parameters,
his hZ’ h3, and associated unit vectors Gl, 62, J3 (Figure 3.2). This
requires that the scalar wave equation is separable in this system.

For the sake of being specific, it is assumed that coordinate uj

satisfies the following two criteria:

C.l1. Any set S = {({uj,up,u3): uj = py, o fixed, up,u3 arbitrary}
forms a closed surface, i.e., surface S partitions the space

into two distinct regions, V+ = {(uj,up,u3): u1>eg,

u2,u3 arbitrary} and V- = {(u1,uz,u3): ui<py, up,u3 arbitrary}.

LN i I S S L SER A mnad b b AR ght an st il § MM AV el el

" FX r:
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Figure 3.2. A general orthogonal curvilinear system with coordinates
uy, Uys u3 and their corresponding unit vectors ul, Ups u

and metric parameters h

C.2. The uj-propagating solutions of the scalar wave equation can be

obtained so that the construction of the uj-propagating vector

1° h2' h3.

solenoidal eigenmodes or wave functions, denoted by ﬁq and ﬁq,

is possible.

It should be remarked that at any point on S, the outward unit vector

normal to S coincides with Gl’

for a particular combination of various mode characteristics

evenness, oddness and order,
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Also, the shorthand notation q stands

such as




}
{
s

N
¥

Nh
P A
N el

AT A

O

- n«
A

e
PRIORNTIN

It is of significance to consider an arbitarily oriented point
[] [} ]

source 3 of strength Ee, located at r' = (ul, Uy s u3), radiating in free
space Vo. According to criterion C.1, V0 is partitioned into two

distinct regions (Figure 3.3):

vi= {F = (uy,u,,u ): u,>u,, u,,u, arbitrary}
1°UpsU3g)t Uy, Upslg yhoo

and

[}
Vo= F = (Ul.uz.u3): Uy<ty, Up,ug arbitrary} .
The interface between V* and V- forms a closed surface defined by

s=1{r= (ul,uz,u3): Uy =Uy, Uyylg arbitrary} ,

which contains the source represented by

(u -0 ) 6(u,=uy) 8(u,-uy)

J(F) = b s(r-r') = p .
e e hyhohq (3.22)
From (3.12) it is clear that
- .. 2 -
v E .. | -v8(r-r')/kq ,res
* b (r,r') = - - - .23
° 0 , ME V+ orreV (3.23)

2
where ko = w?ugey, and ny, € are the constitutive parameters of free
space Vo. Equation (3.23) simply says that EO(F,F‘) is solenoidal

in both V'and V™, but irrotational on S. Thus one can conjecture that
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POINT SOURCE '.i(‘r')=5.8(7-?‘)

/

’, “«
/ \
/ \
0 / !
|
e A S L Y PRVIRY
FREE SPACE / I
V, =V uvtus ]
/ 0 /
] /
| REGION V=: REGION V*: u, > |
, / ] ]
\ u <y /
/

\
/»\-//

SURFACE S : u,=u,

Figure 3.3. Free space V, is partitioned into regions v and V" with
closed surface S as.1nEerface which contains the point
source J at r' = ("1'"2-"3)-
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R -
’g = - ' 24 = - ! e - - = 6(“1"“1) u..
4 Golror®) = Ulup-uy)g (ror') + U(uy-uy)g (ror') - w(r,r') T, ¢ &
(3.24)
where F
m:\ *a
2=+ - = AT oo - +
~ golrsr') = Gy (r,r') for r eV . (3.25) i
I
\': e = - A = - - - - '._-A
= 9olrsr') = G (r,r') forr eV , (3.26)
[
e ] b
1 ,8>0 2
u(g) = (unit step function) |, '
. - o
_::.::_: and E;(F,F') is a dyadic symbolic function (distribution) which is used o\
3
as if it was an ordinary function with the understanding that it will
.
' produce valid results under the integral sign (in the present case, the =
~ volume integral over a subset of V,), .
"\ = = s
:;}' It should be recognized that, by definitions, g; and g, are "
,‘ solenoidal (divergenceless) in v and V™, respectively, while v is -
. o
&‘:- irrotational on S, Mathematically these mean ~
o .
L - + - - - b 4 o~
. V. go(r,r =0 forreV ’ (3.27) -t
[ and ~
a5 = - - _ -
& Ve yr,r') 20 forreS . (3.28)
SR o
. =
[ =
= 62 ..
R s
. -
K- <
2N
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r’,
.ﬂ It may be mentioned that (3.28) implies vey is non-zero in the sense of
o distributions. In addition, E: satisfies the homogeneous vector wave
L equation:
= at - - 2=t - -, - t
o vaxgo(r,r ) - kogo(r,r ) =0 reV . (3.29)
e and the radiation condition:
;t - - A2t n - 4
tim r{xg (r,r') - jk rxg (r,r')] = 0 . (3.30) ]
r>o 7
k
. X
= Now from (3.20) and (3.21), it is seen that the electromagnetic !
fields apart from the surface S can be defined as E
-+ . N - =t
K E(r) = Juuyg (ryr') « p, »r eV , (3.31)
. -t - =t - - - - +
r H(r) = 7 x g (r,r") = p, ,reV . (3.32)

Since the tangential electric field is continuous at S, it requires that

ol LT - - G(UI'U;.)
U x [E(R) - E(A] —p— =

1
=
or

E- - 4 - - 6(u1-u1)
: up x [gy(F,r*) = go(Fur')] ~h, "0 . (3.33) _
‘\.: M
3
x.1
L ‘
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Equation (3.33) is obtained by using (3.31) and the fact that pe is

arbitrary. Likewise, by enforcing the boundary condition on the

magnetic field at the interface S one gets

R - - - . 6(u1-ui) = - . = - -
up x [H(r) - H(r)] ‘“‘;I"‘ = I, = 0(r) =1, « ps(r-r') ,
(3.34)
) where ;t denotes the transverse part of the unit dyad with respect to
ﬁf; the propagation direction Gl’ and is defined by
.-
Ei I = It *uguy 1t = Uy + Ugug .o (3.35)

Employing (3.32) in (3.34) and the fact that Be is arbitrary lead to

]
- =+ - - = - - 8(ug-uq) = - .
up X v x go(r,r') -7 x go(r,r‘ ) _—hl— = ItG(f‘-l") « (3.36)

Equations (3.33) and (3.36) constitute the boundary conditions on

GO(F,F') at the surface S.

Next the irrotational component ¥ will be determined by enforcing

GO(F,;') to satisfy the inhomogeneous vector wave equation described in

(3.11) (with k% replaced by kf;). Taking the curl of éo in (3.24) gives
= - - | Bt o - [] e = -
v x Gy(r,r') = U(uy-uy)7 x golrar') + Ulu -u,)v x g (r,r')

N =+ - = - - G(ul-ui) = _ . G(ul-ui)
U x lgz(r.r') - golrer')] Th " VX ¢(r.r')T .
(3.37)
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The third term on the R.H.S. of (3,37) vanishes because of (3.33) and it

is permissible to choose ¥ such that

v
=_ . 8{uy-uq) -
7x | wr,r )-—7;;——' = 0 »res (3.38)

since up to this point ¢ is still arbitrary other than the requirement

[ ]
= s _ _ 5("1'“1)
that Ve # 0 on S. It may be noted that w(r.r')———]r--' is a
1

symbolic function, hence (3.38) means its curl vanishes on S in the

sense of distributions. Consequently, one will find (3.37) reduces to

= - -, _ ] =4 - - ] e - -
7 x Go(r,r ) = U(ul-ul)v X go(r.r ) + U(ul-ul)v X go(r,r ) .

(3.39)
Taking curl of both sides of (3.39) yields

= - - [} B¢ = = [} B @ =

VX6 (r,r') = U(ul-ul)Vxngo(r,r‘) + U(ul-ul)vXngo(r,r')
( [ ]
- 8(uy-uq)
=4 - = 2w - 1-U}

+ ulx[ngo(r,r') - ngo(r,r')] "‘;I““ . (3.40)

From (3.29) and (3.36) it can be verified that (3.40) will become

a A

WIXG (F 1Y = k2 et PN s SRS
olrar') = kg[Ulup-up)gg(ror ) +0(ug-uy g (rart) - 7= s(r-r')]

(3.41)

+ 16(F-F') .

e .~

P BT
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Comparing (3.24) and (3.41) suggests that choosing

' ' =
. 6(u2-u2)6(u3-u3) L
wr,r') = o ujuy (3.42)
o 273
will make =
= - = ' 2t - - [} = - = ulul - -
L] - ] - ' - -
Golror') = Ulup-updg (r,r') + U(ug-u)g (r,r') W2 §(r-r')
(3.43)
a valid representation of the free space Green's dyadic provided g
conditions (3.23), (3.28) and (3.38) are satisfied. To verify these -
conditions one may integrate V-G over region V-us and then apply the e
Gauss' theorem:
[ uRF Yy = [ WEF) edghon 1 .
-1, r,r" vV = P,r' u du.du. = —2‘ R (3.44) .’:
V-US S 127372773 kg P
Equation (3.44) indicates that v';(r,r') does not vanish on S, e
]
= 6(“1""1) - -
Likewise, integrating Vv x [w(r,r') -—-j;;“‘] over region V US and o
applying Stokes' theorem show . |
] [}
= 8(uy-uq) . = 8(uy-uq) =
] 9x [w(r.r‘)—-1;--]dv = [ uy x [w(r,r" ) ]h,h,du,du N
1 1 h, 27377273
v-us S
- GlUl - - -
= g u; x [_Eg‘ §(r-r')] hohadu,duy = 0 . (3.45) .

{ ‘!.’l '
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= 8(up-uq)
Equation (3.45) implies that Vv «x [w'—-ir———-] indeed vanishes on S.

Thus the validity of the representation of Eo by (3.43) has been
established. Moreover, this representation proves to be most useful and
compact for the efigenfunction expansion of Eo which is considered next.
Anticipating the Eo will be needed in the construction of the
Green's dyadic for a dielectric-coated circular cylinder, one would look
for the eigenfunction expansion of Eo in cylindrical coordinates (p,¢,z)
which are natural for cylindrical structures. To do so, one of the
coordinates p, ¢, z must be designated as the “uj coordinate" that

satisfies the criteria C.1 and C.2 stated earlier,

It is relatively easy to verify that

1. the set
S = {r=(p,6,2):p=p', p' fixed, 0<¢<2n, -=<2<=} forms
an infinite circular closed surface that divides the entire

(free) space into two distinct regions denoted by

v+ {F = (p,0,2): p>p', 0<¢<2w, -=<z<=} and

v-

{; = (p,9,2): p<p', 0<¢<2n, -w<z<w} ;
2. the "p-propagating" solenoidal vector eigenmodes or

wave functions which satisfy the homogeneous vector wave

equation are found be [15,19]
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(1)

m (r'p), an mth order Hankel function of the

first kind

Jm(x‘p) , an mth order Bessel function;

-
|H
T
Zm(Ap)-

and e,o refers to even, odd mode, respectively.
Evidently, it is permissible to assign

(u),u5,u5) = (p,0,2)
and, correspondingly, the metric parameters are given by

(hl,hz,h3) = (1,p,1) .
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 J t 4
=
._x:'v '-]
b %
.:\;}:\ .
i_-_-.
B 1‘.
-+ , - ~m s sin ~3 s cos_ .| jh' 3
Mepat(n'sr) = | ¥ 05 2 (X' 0){  cme} - o 2 Ln( X' 0) {g{ me} el
0
- — (3.46) by
9
) -+ , - 1 -+ -
N Nemat(h'sr) = %5 7 x Mgyi(h',r)
0 0
- |7~ jh* 3+ cos ~ jh'm .
’..:_ = —— —— - L] - - 1 Sin
F ‘l ko 3o Zm“‘ p){sinmﬂ F ¥ ko Zm(" °){cosm°}
- 71 jhe
Si29%, ., cos Jh'z
- + 227 (2 p){sinmﬂ e ’ (3.47)
[* - -
where
rj.
. _ . ) 2 2 .
m= 0.1,2,..0; -D<h <”; A = ko - h. W'lth Imk' > 0 »
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e
. To be more specific, it is assumed that an arbitrary electric point
. source of strength Be is located at r' = (p's9',2') € S, and the
observation point is at r= (py$,2) € V¥ or V-, Then, according to
Equation (3.43), (-50 has the specific form below:
a
. ="'| Wt - -, [ il Rl eP .t
L Go(rsr') = Ule-p')g (r,r') + U(p'-p)g (r,r') - k2 s(r-r') .
(3.48)
It follows that the resulting electric field is given by -
- =t - - -t "
E5(F) = Jumog (ror') < py, FeV - . (3.49) “j
]
- . -t - =t - - - ] - + ::j
; Since E*(r) or g (r,r')ep_is solenoidal for r € V , they can be
i 0 e -
) expanded in terms of the solenoidal eigenmodes as follows: g
0 - N - N "4
Y S = @ |rq(h ',r) -+ - Tq(h',r')| -2 - b3
’ 9o(rsr')epg = [ dh' ] | Mgar(h'sr) . . Ngar(h'sr) 3
- =0 Cq(h',f‘ ) Dq(h',f") ::
- - - - (3.50) ]
el
- .
where rq, Tq, Cq and Dq denote the expansion coefficients; q is a
= shorhand notation for gm and
L
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i " on v Tt (-~
Cq(h o7 )qui(h sr) = Cgm(h s )"gmx'(h nr)

| -, ot - .
| Cem(h ,F )Mem(h ,r) + Com(h ,F' )M

t

omx.(h',F) , m>0

b

Cem(h'.;')ﬁ;mx'(h'oF) » m=0 . (3.51)

- _
It may be noted that (3.51) will also hold if M;x'(h'-') is replaced by
-t - -+ - -4 -
qu'(h"r) since both Momx.(h',r) and Nomx.(h',r) are zero for m=0,

The determination of the expansion coefficients in (3.50) requires
a set of orthogonal properties of the vector wave functions which are

stated in the form of lemmas below. The proofs of these lemmas can be

found in Appendix D.

Lemma 1.
] o Zﬂ [ ~ _Sn _Sm
[dh' [dz [ ode [Rey p x V x Mgy (h,r)]*[Tar Mamyi(h®,F
- lo o on gnx ] [ gm gmx ( )]
_ flfi 5 55N 3 _Sm
¢ Agn rgm A2 Zo (Ae) 5, I (Re) &
Lemma 2,
Jan ] az [ ot hgy 5 x v x A o
dh' [ dz [ edé [Ae, p x 7 x Ngpy(N,F)]e[Tar Nooyi(h',F)
- le on gnx ] [ gm gmx ]
. 4n2 3 S
.A.‘-"' z - — 2 — n Sm
.- : Agn rgm A% 5o L (Ae)Z " (Ne) 8
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Lemma 3.

L = 2%
- -S -S
[dht [ dz [ odo [Re. p x ¥ x Mg\ (h,r)]*[Te. Nomse(h',F)] =0 .
- e o on gnk ] [ gm gmx ( )]
Lemma 4.
@ ® 2n . ‘Sn -S
fmdh' fwdz g pd¢ [Agn p XV X Ngm(h,r)]-[rgm Mgmx.(h‘,F)] =0 .

In these Lemmas, the shorthand notation Aen Ten has the same meaning
o o

defined by (3.51); € is 1 for n=0 and 2 for n>1; 8,n 1S the Kronecker

delta function which is 1 when m=n and 0 otherwise; and Sn stands for
"“+" or "-" sign, n=0,1,2,... .

It is worth pointing out that the orthogonal properties of the
cylindrical vector wave functions have been established in a mixed
domain of (¢,z,h) which is partly spatial and partly spectral. This
implies that these functions are orthogonal on any closed surface at
which the p coordinate is constant. It is the very feature that makes

the eigenfunction expansion process simple and elegant, It should be

mentioned that different forms of orthogonal properties of these vector

wave functions have previously been investigated by Stratton [15] who
used a mixed domain of (p,$,2); and by Tai [19] who used the entire

spatial domain of (p,4,2). Since coordinate p is involved, both [15]
and [19] spent extra effort in dealing with the orthogonal properties

of the cylinder functions.
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To see how the expansion coefficients (an, Dgn’ rgn and Ten) are ::
determined, it is helpful to consider a region V containing the o
. - . - - - +
point source J(r) = peé(r-r') and bounded by a surface in V denoted by
+ - + +. ., =
S = {r = (p,0,2): o', 0<¢2r -wcz<e} -
and another surface in V- denoted by ;S
- - - - N
S = {r = (p ,6,2): o <p' , 0<¢<2n’ -Q(Z(oo} . S
The geometry is shown in Figure 3.4. Now Green's theorem (vector ;ﬁ
version) is applied to the pair (ﬁ;nx(h,F), ao(F,F‘)-ﬁe) over region V: -
0
-4 - = .- - -4 - = - - - -
J [Mgnx(h,r)-VxVx(Go(r,r')-pe] - VxVngnx(h,r)-(Go(r,r‘)-pe)]dv -
= [ L(BG(FaF) by xTiMan s (0, F) Man o (h, )X (G, (771 -5 )
! olTsr')epg)xvx gnx( ,F)- eni sP)x9x(Go(r,r*) pe)]-n S . -
v stuys- 7
- Us (3.52) -
-
9 Since GO(F,F') and ﬁ;nx(h,F) are solutions of (3.11) and (3.29), \
A 0 -
L respectively, the L.H.S. of (3.52) can be reduced significantly as ]
- follows: :
.
..:_.' :—}
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Figure 3.4. Configuration for determining Cen. Den- Te, and Ten

o L0 o, o
- region V is bounded by surfaces S at p=p and

ST at 2’9', and source J is located on surface S at

p=p'(p">p'>p").
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= (i S e el Py L

LS. = [ [Hena(07) - (B 8(F-F 1ok B (7,7 45,

- kMg (a7« (B (R, B ) Jav

_ -4 - === -4 -\ -
= J Mgnx(h.r)-pes(r-r )dv = Mgnx(h.r ) *Pe . (3.53)

From (3.48) and the fact that n=p+at S+ and 3=-p' at S~, it is clear

that

=4 - - - -4 -
R.H.S. = [(go(r,r')-pe)xVXMenA(h,r)
S+ 0

- Ménx(h,F)xVx(g;(F,F')-ﬁe)].;+ds

+ ] [(95(Far*) Py )xTxMen s (h,F)
5" 0
- ﬁgnx(h,;)xVx(;;(F’F').Be)].(-;')ds . (3.54)

=% o
Employing the expanded form of (go°pe) in (3.50), the two surface

integrals of (3.54) can be manipulated as follows:
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[T 1ep"ds
st

7 ) 2n | w i E - e Rt , =
- [ a £ T {“ L [rgm( o )Mgml'(h oF)

v =iyt [ I + “+
+ Tep(h',r )Ngmx.(h ,r)]xVxM%mx(h,r)-p

0
i"’ - v Soyvet ' oo v Toynt (- A+_I
= Mep (h,r)xvx[Tep(h' ,r Mg, (' yF) + To (R ,F*)Ng o o (R',F) ] 0
~ o 0 0 0 0 l
o 0 o 2rn + —.+ -4
- =- J [dh' [dz [ o 4e ) o X7xMep, 5 (h,F)
- m=0 -o -~ 0 0
* [Tep(h' .7 WMapyt (N*3F) + Tep(n' sk INamye (' oF
| g™+ Mem g™+ gma: (1)
. - o' [Tep(h',F)OxMe Lo (n',F 'RV OxNg 1 (h' 7
p Em( 1 X me‘(h oF) + Tem(h oF )VXNENA'(h ’r)]

g 0 0 0 0

: ., 7
u * Menx(h.f‘) | .

. o

& Using Lemmas 1, 3 and 4 one obtains

e 4+ Folar e, ), 2 (1),

JU Jeods = - } = Tamp MH "'(Ap ) —F H."(xp )8

S+ m=0 | en om n p m mn
= LN S A NI L BT
- 2 —_— =
e Fgmp MHo (Ao ) apt Hn (R0 )80 0
- (3.55)
.
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5.

[ [ Je(-p7)ds

5
L 2n @ - - =
= [ dz ] o q¢ J dn' 2 [Cep(n’sT* WMepye (h',F)
~o - m=0 _ 0 0
+ ng(h',F')ﬁémx-(h‘,F)]xVxﬁ%mx(h,F)-(-;-)
wt - vV ooaee von VooV - - —|
- Mgnx(h,r)xVxLCgm(h ,F )Mgmx.(h_,r) + ng(h oF )Ngmx.(h M) e(-0) \
@ © o 2n _ - -4
= I [dn' [dz [ 07de | o xVxMg,(h,F)
m=0 -= “o o] 0

-—

. [Cgm(h',F')ﬁémx-(h',F) + ng(h"F')iémx'(h.'F)]

- IR [Cen(h' ¥ Mgy o (n',F) & Do (n', 7 Wgp e ()]
0 0 0 0

-4 -
* Mep,(h,r) | .
[¢]

Again, making use of Lemmas 1, 3 and 4,

J I ]’(-;-)ds = E —Cem( -h,r')p AZH( )(Xp ) - J (Xp )5
S+ =0 | n 0

L o1 B
em Cgm( -h,r')p A2J (Xp ) (ro ) 8n

4112 (1)

cen(-h r)e )@-x[ (1)

(078 0600 e M 6]

ﬂ
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The MWronskian

v e
» s TL T
B oLt .
. el e e
. 3 .

(1) I (1)* _ 2 B
N[Hn (z).Jn(z)] = H " (2)9, (2) - H ™0 (2)9 (2) = - 2 . o
Hence, iﬁi
- "jaﬂ - T:F--I
JUY e (-p)ds = A2 Cop(-hyr') (3.56) S
- n o o
It is obvious from (3.55) and (3.56) that =
~p A ‘js“ -
RHS. = [ [ Jepds+ [[Ts (-p7)ds = —— 32 Cop(-h,r') .
st s n 0
Equating L.,H.S. and R.H.S. gives
-4+ - - -jaﬁlz -
M%nx(hnr')‘Pe = €q an(-h,r') .
Reversing the sign of h and solving for Cen gives
0
-, Jen -4 - -
an("-" ) = genZ "gnx('"-"')'Pe . , (3.57)

If one applies Green's theorem to the following pairs:

- (Nena(na)s G (FaF') e (Maqa(haf)s G771 Bg) (Reqa(hif),

GO(F,F')-Ee), and follows the preceeding steps closely, then one N

obtains
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-, Jep -t —
Dgﬂ(h’r ) = 8“X2 Ngnx('hor )'pe » (3.58) q
'
-. jen - -. - E:i
ﬂ
and
- ep - -\ -
, Tgn("-' ) = g2 "gnx('“-’ )*Pq , (3.60)
- respectively.
-
tQ: Substituting (3.67) - (3.60) into (3.50) results in the complete

eigenfunction expansions of the solenoidal components of (_;o given below:

R J ?dh f 0 R (hyF)Map 5 (=h,F*)
r,r') = 3= =2 . -h,r'
0 8% 1, pio A gna &na

P -,y |
+ Nenx(h,P)Nen)‘(-h,P ) .
0 o (3.61)

Hence, the formal eigenfunction expansion of éo has been completed., It

is, however, of interest to mention that Tai [19] has shown that j

= - - = 1 - - - - q
Gy(r,r') = (1 + 'k‘g g (r,r') , forall ryrf eV, (3.62) )




kgl r-r|
e

g (F,r') =
0 4“IF-F' l (3.63)
Since, for r#r', éo(F.F') is identically equal to either E;(F,F') or
ES(F,F') (depending on the location of r), it is straightforward to

conclude from Equations (3.61) and (3.62) that

j © o €n |—-+ - -3 - - -
8 LA T 32 | Mena(narIMepy(=h, ') + Nopyr(h,FNgyy(-hoF*)
8% o nio A en en eni eni
= 1 - - _
= (I+ EZ'VV) golrsr') , rErt (3.64)

D. GREEN'S DYADIC FOR A DIELECTRIC COATED CONDUCTING CYLINDER

The geometry of a dielectric coated cylinder is fllustrated in
Figure 3.5, It consists of an infinitely long, perfectly conducting

circular cylinder of radius a coated by a uniform dielectric layer of

~thickness t = b-a, permittivity ej = epey and permeability wy = Uge €p

is in general complex to account for lossy dielectric. The z-axis of
the cylindrical coordinate system (p,4,2z) coincides with the axis of the
cylinder.

In order to determine the electric Green's dyadic for this
geometry, it is convenient to divide the entire space surrounding the
conducting cylinder, denoted by V, into two distinct regions defined

below:
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Figure 3.5, Geometry of a dielectric coated cylinder.
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vl = {; = (p,0,2): a<p<b, 0<¢<2n, -~<z<~} s (3.65)

and

VZ = {F = (p,¢,2)! b<p<=, 0<¢<2n, '°<Z<“} . (3.66)

As a consequence, Vi is the dielectric layer, while Vo is the air region
surrounding the coated cylinder, and V = ViUV,,

In analyzing conformal microstrip antennas, it is sufficient to
consider the electric current source that is located in region Vy only.
Consequently the electric Green's dyadic Ee for region V will consist

of two components, denoted by Gej and éeg; such that

Ee(FsF.) = U(p'b)EeZ(FpF.) + U(b'Q)EeI(F.;') (3.?7)

where ael and aeg satisfy the following vector wave equations:

= - - 2: - - -
TxWxGy (ror') - kyGgy(r,r*) = 0 s reVy,r eV, , (3,68)

= - = 2= - - = - = - =,
TXUXGyo(r,r') = koGop(r,r') = 18(F-F') , F,F' e vy ’ (3.69)

ky = w?ulel and k, = w2u252 = w2y e =k_, In general terms, Goy(6gep)

0°0 0
can be thought as the electric field in Vi(V2) due to a point source in
V2. Correspondingly, there exists two mangetic Green's dyadics, denoted

by Gp1 and Gm2, such that
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= __. 2-_- - - '
X6 (r,rt) - klﬁml(r,r') =0 , reV, rleVv, , (3.70)

= - - 2= - = = L - -
VxVxsz(r,r') - szmz(r,r') = yxIé(r-r') , r,r' e V2 ’ (3.71)

and they are related to their electric counterparts as

Ha =

Gy (rsr') = :: VxGgq (ryr') » M eV, e Vo (3.72)
sz(;,;.) = VXGez(F)F.) » F’F. € vz- i (3'73)

Equation (3.73) follows directly from (3.9), while (3.72) is established

in Appendix E which also shows that

EF) = dmy [ GRS ENY L Fey (3.74)
2

ﬁl(;) J Eml(F,F') . 3(?')dv' , € v (3.75)

2

where E1 and H} refer to the electric and magnetic fields in Vi due to

source J in V2. And, of course, it follows from (3.17) and (3.18) that

EZ(F) = jou, J ;ez(F,F’) . 5(?')dv' , F € v, (3.76)
2
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(3.77)

.

Hy(F) = Jz Emz(F,F') e I(F)dv' , Fev,

where Ez and H represent the electric and magnetic fields in VZ' It

2
may be noted that the magnetic Green's dyadic for region V can also be

cast into a form similar to (3.67) as follows:

n(Far) = B(o-b)Bo(Fui*) + U(b=p)G, (F,F")

G "

= U(p-b)Verz(F,F') + U(b-p)ﬁ% VerI(F,F') , M e Vo o (3.78)
However, Em will not be involved in the following analysis, and it is
being intrnduced for the sake of completeness.

To specify Ee uniquely for region V, it requires Eel and Eez to
satisfy the boundary conditions pertaining to V. These conditions can
be readily derived by considering the corresponding boundary conditions
imposed upon the electromagnetic fields in V. First it is observed that
the tangential electric field vanishes at the conducting surface of the

cylinder, namely,

b X E, (F) =0 . (3.79)
p=a

Secondly, at the interface between regions V} and V;, the tangential

electric and magnetic fields are continuous, i.e.
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(3.80)

(3.81)

Next substituting the integral representations of the electric and

magnetic fields defined by (3.74) -(3.77) into (3.79) -(3.81) one

obtains in the following set of boundary conditions on the dyadic

fields:

-~ x = (- -')l _ 0

[o] e1 l‘,r l - » (3.82)

p=a

P x [Bp(Fur’) = Gy (Fur*)] p = 0 ’ (3.83)

-~ = - - u_z = - -

P X [VXGez(r,r ) - uy VxGel(r,r')]p=b = 0 ., (3.84)
In addition, éeg must also satisfy the radiation condition:

zim r [9xG,o(r,r') = JkyrxG,(F,r')] = 0 . (3.85)

r o

The simplest way of finding éeg is to apply the principle of
scattering superposition, Thus one will consider

Gea(rar') = 6o(FyF') * Gp(Faf')  , Ful' €V, (3.86)
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In Equation (3.86), éo is the free space Green's dyadic found in Section

C; and is expressed explicitly below for convenience:

aan

6o(FaF*) = U(p=p")35(Fo") + V(o' =0)G(FuF") = 2 (7-F")

0
U(p-p") = }° dh ‘i’i"[r (h,F)Mg (<h,T)
= - 2 Ny -h,r
8n no X gnx enat™h

+ Nopa (L FING 1 (~h,7 )] i
0 (o]

' l_:]- o o -e-'l - - -4 -,
+ U(e'-p) | 8x [ dn } 22 [Men)‘(h:r)MenA('h,r)
| - n=0 ) 0
- ese Tl ee oo -
+ Ngnx(h'r)NgnA('h'r )], - %3 §(F-r') , F,r' ¢ V2,
(3.87)
‘? .' and 552 satisfies the homogeneous vector wave equation and therefore
[
must have the form
l = ® -
3 Gyg(Fr) =gy [ 3 33 | (Aerfena(na) + Bogiony ()]
= r,r') =3~ dh 32 M h,r) + By.N h,r
s2 8r ngg A en gnk gn gnatte

WPy
Pl

Mena(-n,7') + [CopNana(har) + Dogr s (h,F) ] Nemy(-h,F*)
0 0 0 e’ 8" 0 ‘

T
Rl
-
=L
o
<
()
L]
Cam
w
.
2
00
A
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It is clear that the sum of Go and Gs2 will automatically satisfy (3.69) -
- = E

that governs G_,. Loosely speaking, G, may be interpreted as the
incident or direct field, and asz as the scattered field. As for the o}
= -+ - - - 2
form of GsZ’ the choice of Mgnx(h,r) and Nénx(h,r) as the anterior 5
elements is dictated by the radiation condition (3.85), and the choice L

-4 - -4 -
of Mgnx(-h,r') and Ngnx(-h,r‘) as the posterior elements is guided f
by the expression for 3; because various boundary conditions such as .
(3.83) and (3.84) can be satisfied only if the posterior elements of 3; £
and G , are the same. .
Once the form of 552 is determined, it is relatively easy to -
formulate the expansion for Ggi given below: -
= - . J = ' - -+ - -4 . -y
G (] = — ————

e1(rsr') B {. dh nz 2 [agnﬂgnu(h,r) + BgnNgnu(h'r) ;
+ YepMen,(hef) + To Nor . (h,F) ..
ignu{Mer) + Tgnlgnulhor)] :
i+(h")+[ Ne (h,F) + bo M (h.F -
g ) T Logalgnuhur) * Danflgn, (a0) :

- - - - -4 -
+ de Ne (hsr) + oM (hor)] N (‘h'r') ’
on onu gn gnu gnx
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et

In the case of Gel' the posterior elements "enx( -h,r') and "enx( -h,r')

must be chosen to match those of G a2 Such that the boundary conditions
at the interface (p=b) can be satisfied, and the anterior elements

-% - -+ -
Menu(h,r) and Nenu(h-') are chosen because they are the solenoidal
0 0

eigenmodes and will constitute the bouncing waves inside the dielectric
(region V).
It is important to note that the parameters X and u which appear in

(3.87) - (3.89) are defined as follows:

=[k3-h2 ,Imr>0 , Rer>0 , (3.90)
=[kf-h7 ,Imu>0 , Reu>0 . (3.91)

There are totally 24 unknown coefficients in the expansions of Eel
and Eez. Not too surprisingly, however, there are exactly 24 linear
equations that govern these coefficients after expanding the boundary
conditions (3.82) - (3.84), This 24 x 24 system of simultaneous linear
equations can be solved analytically. The algebraic details are

presented in Apendix F and only the final results are listed here:

Aen = A_ (3.92)
0
Ben = iBn (3093)
0
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2hn  u, u2 T

= wkgpz () (1-52) 3 Gy,

T M2 2
E‘ -(7) wPp + (k2/Ky)

Y. =
n= x | Hy (AB)Y,

88

................. L\

(3.100)

(3.101)

(3.102)

(3.103)

(3.104)

..........

;./'" e

Ly
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)
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.........

) |~ up  u? -
J2 k2 | -uQn + (71) X~ raTn

d = (3.106) j
n = () | H (b)Y
2hn kz uz Sn
fn = b2 (k_{) (1-352) H, (AD)Y,, (3.107) |
Jn(Ab) vz w2 T,
A= -w o)t () X2 B 0b) (3.108)
k2 Uz Sn
Bo = () %2 H()  Tn ) (3.109)
Jn(ab)  kp w2 Sy s
Co = - Hy (Ab) * () % H,(Ab) ds (3.110) ;
S, = 9, (ub) + p H (ub) (3.111)
) ' :
Pn = J,(ub) + p H (ub) (3.112) 3
' ' ‘:
Qp = Jp(ub) + q H (ub) (3.114)
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I, S e - = -
-0 &:
e up u? M2 2wt b
N Yo = ['"Qn * (“1) 3 nlal - (“1) WPh * ( ) 2 n n] -
- hn 2 193 u2 2 ::
- - Gop) G (-32) s, (3.115) '
X In(ua)
n"\ p = P <
Jn(ua) f}

I = - W (va) (3.117)
(- Ha(Ab)

“n = H (b) (3.118)

(1) ey 4 S0 -

‘ H (E) = H (¢) , and K (£) = db; Hyo (&) . (3.119) =
3 .
T Making use of (3.92) - (3.103) in (3.88) and (3.89) leads to the i
») following simplified versions of (-552 and Gga1, respectively: ¢
i -

= - - o dh o - -t - - - s

) Gsz(r.r') = f -{2_ nZo En [An Menx(h,r) ¥ Bn Nonx(h’l‘)]

- = 0 e -
:7:;‘ -4 -, =4 - -+ -y =4 - B
5 Mg“*(-h’r )+ [Cn Ngnk(h'r) ¥ Bn Mgnx(h'r)] "gnx('h." ) l ’ _
o _
o (3.120) ‘
. Z
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and
= - - j = dh o - - - -+ -
Gel(r'r ) = g; ! ;; l en [Yn (Menu(hor) + qn MEnu(h'r))
.o n=0 0 0
- c- - ~+ -
™ ¥ T, (Ngm‘(h,r) +p, Ngnu(h,r))]

=+ -, S- - -+ -
Mgnx('h’r ) + [dn (Ngnu(hor) + pn Ngnu(hor))

- - “4 - “4 -
¥ fn(Mgnu(h,r) +q Mgnu(h.r))] Nenal-hor') )

(3.121)

This completes the construction of the dyadic Green's function for the

dielectric coated cylinder.

E. EXPANDING THE GREEN'S DYADICS

s
31
S .

One may have already observed that dyadic functions are
notationally so compact that they greatly simplify many formal
manipulations, Ironically it is this very compactness feature that
tends to conceal information. Often enough deeper insight can only be
gained after the dyadic functions have been expanded. Anticipating that
the Green's dyadic for the coated cylinder will be used in the analysis
:7 in the chapters that follow, it may be worthwhile to expand Ee into

component form such that the electric field can be easily read off once

’ ' excitation is known.
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Various components of Ge in regions Vi and V2 are presented in the

following.

Region V2 (air): b<p,p'<w, 0 <¢,4'<2n, -w<z,2'<>

It follows from Equations (3.67), (3.86) and (3.87) that

B(FoF') = Byy(Fuf*) = G (F4F") + 6 ,p(FiF")
= U(p-0')g" (r r') + U(p" -p)g (ror') - :; §(r-r') + Gsz(r r').

(3.122)
Making use of (3.46) and (3.47) in (3.87) yields

@ n

S(FWF') =
..I L LIPS |
I op' | o L (Xo)Z (xp') + (k ) Z (Ap)l (Xp )

nih2 N
« cosn(¢-4') + p¢ }—z (Ap)Z (xp ) + Go" z (Ap)z (2p" )|s1nn(¢-¢ )
an |7jha3 o |—nk +! F
tez gz Z (Ap)Z (20! )‘cosn(¢-¢ ) - o5’ \ o Ly (A0)Z (20')
n Ah2 . 2 N -
kgp 4 (XD)Z (o' )lsinn(¢- $') + ¢¢ I XZZ (XD)Z (Ap )

nh21 N ~jnaZh N

- ¥ (kz) oo’ L (Ao)Z (xp' )Icosn(¢—¢ ) - ¢Zi k3o L (xp)Z NEYS )Isinn(¢-¢ )
E:F ~~ 1 JhA® » A2

° -2p %g“ Zn(xp)l (Ap ){cosn(¢-4') - z¢ JE“"Z (Xp)Z:(Xp')i51nn(¢-¢')

an |4 '
+ 22 ' kz 7t (xo)Z (xp' )|cosn(¢ ¢') i e‘jh(z'z ) ’ (1.123)
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where,
: (W), - d 3
Zo(g) = Ho (8)5 T (g) = J,(&) and Z (e) = 4e n(a) R
It is of interest to point out that formally carrying out the :%
= 1 - - -
operation (I + ;g vv) go(r,r') in (3.64) will lead to the closed forms
=t
of g  given below:

I~ _ Jk2R Jk2R

=+ 1 ~s | e e

9o(rsr') = Zqxz | po' |_(K2 TR+ P g3 ) cos(e-4')
- JkaR

e -
+ Q(e-p'cos(¢-4")) + (pcos(¢-4')-p") 3 _j

_ JkaR JkaR
+ oo’ | k§ + [P+o(p-p'cos(¢-4'))0] * %3 _|sin(¢-¢")
JkaR

an |7 e
+ oz |_(z-z')[p-p‘c05(¢-¢'))0 T3

JkaRr jk2R
an - e e —_
- ¢0 |_ k2 —g— + [P+o'(o'-0cos(¢-4"))Q] - T_‘sinuw')
Jk2R Jk2aR Jk2R
an - e e e =
+ 00" | (k2 =g+ P 37 ) cos(4-9') + po'Qsin?(e-¢") ,
jsz JkaR

an e
+ ¢z ‘ p'(z-2')sin(¢-¢' )0—?‘ ‘ + Zp |(z z')(pcos(¢-9¢" )"")QT_I

_ JkoR JkaR jsz
aAa e - aa | e -
+ 20'| o(z-2")sin(¢-¢" )03~ l + 22 : kg R+ (PH(z-2 )20 l

(3.124)
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where

- - 1
R = [r=F'| = [0 + 0" - 2pp'cos(¢-9') + (2-2')2]

©
it
€.
»
N
-
[

) i3k, 3
Q--kz-R *R2 * .

Next substituting (3.46) and (3.47) into (3.120) gives

. A T I
oo’ ‘An[;zggr Hy (A0)H_(3p') ]

joh 1 1
+ By %k, (ot Ha(Ae)H (e*) & o H (xo)H (%")]

hzn ' -
cn[(;;) Hn(xp)Hn(xp')]'cosn(¢-¢')

~n - n ih J '
+ oo IA n(xg Ha(2e)H (20')] + B %; [H,(Re)H (3p")

n2 nh2 ' —‘
oot HaOH (') ] + € [L735 Hn(xp)Hn(xp‘)]lsinn(¢-¢')

aa L
+ pz Cn[%g“ Hn(XD)Hn(Xp')] - B [;3; Hn(xp)Hn(xp‘)] icosn(¢-¢')

A an n [ h n?

L» -0’ An[x_p" Hn()‘p)Hn(Xp')] + B, Jk_z- [X_z‘;-;a Hn()‘p)Hn().p')
r‘j:; -

F- J ] nh?2 |

® +*H ()H (R0')] + C [kgxp n lp)H (x0")] ls1nn(¢-¢')
2

2

. an - [ [ nh 1 [}

E’;—‘_‘: + 69 | An[Hn(Xp)Hn(Xp')] + Bn i; [ _;; Hn(Xp)Hn(Ap') +
f‘ —
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1 nh 21 '“
* ot Ha(e)H (e®) ]+ € [(0F) 707 Hy(RedH (Re*) ] jcosn(e-¢')

_m . __A_l ‘—| .
cn[kip H, (e )H (Ao )} - Bn[kz H (Ao (20 )] fsinn(e-¢*)

an

-4z o

- n jha ' |
+ 2p ! Bn[(k—zp'.)Hn()\p)Hn(Xp')] - Clig Hn(xp)Hn(xp')]Icosn(¢-¢‘)

A ' jnh N

+ 26 Bn[g Hn(xp)nn(xp')] - cn[gp—. Hn(xp)un(xp')]Isinn(M')
P N 1

v2z | () Hn(kp)Hn(Xp')JI « cosn(g-g') | T
B - _l (3.125)

where
' d
m(e = 8N ana (e - el

Region Vi (dielectric): a<p<b, b<p'<m, 0<¢,¢'<2w, -=<2,2'<

It is clear from Equation (3.67) that

Bel(Fur) = Goy(FF") .

Using Equations (3.46) and (3.47) in (3.121) yields
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= 3 o [ J “~a nz

—

By (Far*) = 5o {“ghnzoen pp'i Yo (32557 Hol2e') 1[0, (up)+a B (up)]

Jjnhu
+ 1 [;:;{"T H (xo')] [J (up)+p H (uo)]

hzu [ [ 1 J nh
o Ha(e) 109 (w4, (ue) ] + £, [0 n(“’ )]

n

* [9,(up)+q M (up)]jcosn(4-¢') + ;;'l Yn 5p Hn(lo')][Jn(uo)+qnﬂn(up)]

j_h£ ' [ ' nh2u
* T lia Ha(e!) ] [9p(ue)+p H (up)] + A [ iaggr Hy(2e")]

' ' jn2h N
. [Jn(uo)+Pan(uo)] * o loazoot Hn(ko‘)][Jn(up)+ann(up)]isinn(¢-¢‘)
an | jh

+ pz | dn[ET;§ Hn(Xp‘)][J;(uo)+an;(uD)] - [kzp n

(x0')]

- s
. [Jn(up)+ann(uo)]‘cosn(¢-¢') - ¢o' i Tn [;Eﬁr Hy(2p')]
. [J. ' M .

n(ue)*apHo(ue) ] + 7 [} 52,07 Ho(Ae') 1[9, (ue)+p H (up) ]

nh2 ' jhu
+ dn[klkzkp Hy(20")] [Jn(“°)+ann("°)] +f [kzx n(xp )]

3, (up)+a, H (up) isinn(¢-¢‘) + ;;'i Yn [f'H;(xo')][J;(uo)+an;(uo)]

jnh_ n2h2




jnhu

* Lgluedsp i (uo)] + [;;;E;T‘Hn(xo')][Jn<up)+qnnn(up>]icosn(¢-¢')

~n Jjnh
Y. | dn[klkzp Hn(Ap‘)][Jn(uo)+ann(uo)] - f, I:—Z H (A0)]

' ' ' an I_ nuZ
y [J (up)+q H n (up) ] ,s1nn b-9') + zp' l L [;;:5;7 Hn(lp')]

[Jn(up)+Pan(up)] d, [;:;;;_Hn(kp')][Jn(up)+an (up)] icosn(¢-¢‘)

An

- 2 " : 2
u ' n h
+ 24 J U

T [I:; HoOho' 1[3,(ue)+p H (we) ] - d [klkzxzp' Ho(20")]

|
- an |7 2
° [Jn(up)+pnnn<up>1lsinn<¢-¢'> | dn ik, Hal2e")]

o
- [Jn(up)+Pan(up)]ICOSﬂ(¢-¢') SNz (3.126)
where
1 08) = w0 and 1) = 57 Ve,

LA it s ua A a4

Thus, the dyadic Green's function for the coated cylinder has been

i

expanded into a form from which the electric field components can be

readily identified once the current density is specified.
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CHAPTER IV

PATCH DIPOLES ON A DIELECTRIC COATED CYLINDER

A. INTRODUCTION

The main goal of this chapter is to obtain expressions which will
enable one to compute either directly or indirectly the self and mutual
impedances between expansion dipole modes, and to evaluate the elements
of the voltage vector for the case of a dielectric coated cylinder.
These impedance and voltage elements are crucial to implementing the
method of moments to analyze the coupling between microstrip antennas.
The single most important quantity in these computations is the electric
field excited by an expansion dipole mode at the air-dielectric
interface associated with the dielectric coated conducting cylinder.
This is due to the fact that an appropriate combination of expansion
modes is used in the moment method solution to model or approximate the
true current on a printed antenna patch,

Extensive use is made of the electric Green's dyadic constructed
in Chapter III to obtain expressions for the electric field or its

components. To ensure continuity and consistency relevant symbols
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or notations will retain their original meanings defined in Chapter III,
unless stated otherwise. For convenience, some pertinent notations are
summarized below.

V refers to the space surrounding the circular conducting cylinder
of radius a. It consists of two distinct regions Vi and V2 such that

V = Vi1UVy, where .::
V1 = {F = (p,4,2): a<p<h = t+a , 0<¢<2w , ~<z<w}
represents the uniform layer of dielectric coating of thickness t, and

V, = {f = (p,9,2): b<pcm , 0<9<2x , -oo<2<a}

stands for the (free) space or air surrounding the coated cylinder. The

constitutive parameters for Vi and V2 are, respectively, (uj,e1) and

-

(uz2,€2) with corresponding propagation constants ki=w/ujej and
k2=w/upes, The Green's dyadic for V is denoted by ae(F}F“), where
rev designates the field point and roe V2 refers to the source point
which is restricted to V2, The Green's dyadic can be conveniently

represented as

@D

e(F'F‘) = U(b-p)éel(;’F.) + U(p-b)zez(;,F') ’ F eV, F. € V2 ’

(4.1)

with ael (Equation (3.126)) being the Green's dyadic for Vi, and éez
(Equation (3.122)) being the Green's dyadic for V2, Likewise, the

electric field is written as
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E(F) = U(b-p)E (F) + U(p-b)E,(F) , T eV (4.2)

where E, (r) = pElp(F)

+ ¢E1¢(;) + zElz(F) is the electric field in V,
given by
E (r) = Juu, 5 Gor(rsr') < alrt)av!  , rev, (4.3)
2
and EZ(F) = °E29(;) + °E2¢(F) + zEZZ(F) is the electric field in V,
given by
Ex(r) = juu, | Ggp(ror') = d(F')AV'  , eV, . (4.4)
2

J denotes the electric current source immersed in Vo2, The corresponding

magnetic field H takes the form
H(F) = U(b-p)H;(F) + U(p-b)Hy(F), reV (4.5)

with Hy(F) = 1/(juuy) WxE (F), F e Vy, and Hy(r) = 1/(juuy) VXEx(r),
re VZ' Finally, all the expansion coefficients associated with the
Green's dyadics are defined by Equation (3.92) through Equation (3.119)
which in general cannot be readily expressed because of their

formidable complexity.
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It should be mentioned that there is an attractive alternative to

the Green's function approach for calculating fields due to the surface

current source located right at the air-dielectric interface of the
dielectric coated cylinder, Such an approach is discussed in Section B.
It is analogous to the planar dielectric slab case treated in Chapter
II. Section C utilizes the Green's dyadic to obtain the electric field
in regions Vi and Vp, The excitation is taken to be the current of an -
expansion dipole mode placed at the interface. A general expression for 7
the mutual impedance between two arbitrary expansion modes is derived.
The computation of these mutual impedances is an extremely important
step in the moment method solution to the problem of analyzing the

coupling between microstrip antennas. In Section D, examples of

coupling between two expansion dipole modes, both with z-polarized

currents, are studied. It reveals certain interesting but important
jﬁf numerical aspects of the Green's function solution., In the last
section, an expression useful for far field calculation is derived via

the method of steepest descent.
B. A SPECIALIZED METHOD OF SOLUTION

This section presents a method particularly suited for analyzing
patch antennas printed on a dielectric coated conducting circular
cylinder, This method is conceptually simple and is analogous to the
approach described earlier in Chapter II for the planar dielectric slab

case. Thus the presentation will be brief. The inclusion of this
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method is due to the fact that it does provide an attractive alternative

to the Green's function method on which the analysis in later sections
is based. 1In the present method, the electric surface current on the
printed conductor that is situated right at the air-dielectric

interface is introduced only through the boundary conditions. The
solution is rigorous since the effects of the dielectric coating and the
cylindrical conductor are both accounted for. It inclu’ the radiation
field and surface waves. Only formal expressions for the total fields
(electric and magnetic) are derived here,

Being a surface current, the microstrip patch current is introduced
through the boundary conditions. As a result Maxwell's equations have
to be solved for homogeneous source-free regions Vi and Vs, An
arbitrary field in V5, i=1,2, can be constructed from two scalar
functions: e which generates a TE field and yyi which generates a ™

field. Both yei and yynj satisfy the scalar wave equation:

Yei

’ 2
(V2 + ky) {“m1} =0 , (4.6)
2
where k'i = mzu_iei, i=1,2.

The electric and magnetic fields can be constructed as

follows [16]:

E(7) = 0E, (F) + 6, (7) + 2E,(F)

- -Ix(2v, (7)) w2y (7)) , (4.7)

- jm&i
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Hy(F) = Suip(F) + ;H10(F) + M, (F)

-~ - 1

The explicit forms of the field components are given below for

convenience:

- 1 2 1 a2
Eip(r) = = 3 %9 Ve - jue; 309z ¥mi
- 2 1 1 22
Eiolr) = 35 Ve - jue; » 292z i

- 1 2,
Ejz(r) = - Juey (azz + ki) g
- 1 2 1 32
Hiolr) = 2 %% Vi - juuy apaz Yei
- d 1 ¥
H'I ¢(r‘) = - 3p Ymi jwu.lp 9432 *e‘l
- 1 L
Hip(r) = - Jumy (322 + &4 ¥eg

In order to specify the fields uniquely, the wave Equation (4.6) must be

solved together with the following boundary conditions:

VXVx(;¢ei(F))

(4.8)

(4.9) :

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

......
..........
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N
on the surface of the conducting cylinder, ::
=
PxER)] =0 (4.15) -
p=a
.—,
on the air-dielectric interface,
p X [Ez(r) = El(r)]p=b = 0 ’ (4.16) :
p X [HZ(P) - Hl(r)]p=b = JS(;) ’ (4.17) 5:;'
where
Jglr) = adg (r) + 20 (r) (4.18) .
is the surface current density on the interface at p=b. Of course, the '
solution must be chosen so that the radiation condition is satisfied as :ﬁ
[r] » =, F ¢ V2. a
Due to the cylindrical symmetry of the structure under &2
consideration, the scalar functions, ¥ei and Wi, can be expressed as a fj
Fourier series - Fourier integral:
B -—| T~ h —l oo
Wei(r) - -_1- @ q’ei(p’nt ) jné _jhz o
- = ~ e e dh , (4.19) -
b (P 2T nEee -= |y (p,n,h)
- mi I mi \ P
o where -
@ -
e 104
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_}1(9:".")— 1 21 - '-wei(F; e -jhz -
" = on J - e e dz d¢ . N
Wm-(o,ﬂ,h) I 0 -= Wmi(r)l ::.::
.
Similarly, \-)S(F) can be formally represented as
- - -l L4 P ans ‘n hz [
I(F) =7y T (Wgylounh) + 2 (omam} e I an i
with ) ._
‘—3 (o,n h)— 1 2n -J (F)—| :
Py 'y bt - - -
S i s¢ - e ne e ihz dz d¢ . .
- - - - (4.22)
Substituting (4.19) into the wave Equation (4.16) leads to the “
Besssel's equation of order n:
_ _l !-
L _d__ I ~ei(9pn)h) ] .'
[o dp (o ) * ((kpip)2 - n2)] ~ =0, i=1,2 , ¥
wm‘l(p’n’h) '~
_ . (4.23)
where kp1 = -’k% - h2 ., The solution for region V, can be written as
105
\
L ‘“ ) "4' ;‘;-'LL o LJM‘ L e A A e e T e el




R i AAC S AT T T T TN R oy

B e ]
Ca T b

T~ B - - - |
e1(Psn,h) l Be(“.h) | (2)
* Ho

| i i Ae(n,h) i Hﬁl)(k
{ m1(Psn,sh) l l Am(n,h) l

p) (k_p) ,

" P

‘ Bm(n,h)
- - (4.24)

2
where Hﬁl)(g) and H£ )(5) are the Hankel functions of the first and

second kind which represent, respectively, the outgoing and ingoing

waves in V.. As for region V,, the solution takes the following form:

~ || I
I Vap(psn,h) . ro(n,h) 1), .

V(o) | |t Mo (kgpe) (4.25)

m2' Pslls ‘ m(n,h)

— —_— —

since there are only outgoing waves in Vo,

Making use of (4.24), (4.25) and (4.19) in (4.9) to (4.14) one can
express the field components more explicitly. In particular, the
transverse field components with respect to the p-direction can be

rewritten as follows:

in region Vi (a<p<b, 0<¢<2m, -=<z<=),

T (1!
/ dh{kpl[AeHn

(2)

n (k01p)] jmﬁlp

- _l hg
E1¢(r) = 2w =§

(k,.P) + BeH

1 2 j jh
* [AmHg )(kpxp) + BmHg )(kplp)]} eJno S

’ (4.26)
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- 1
Ep(F) =g I [ o

kz
p h
jwei [AmHﬁl)(kplo) + BmHﬁz)(kplo)]} "¢ ej z, (4.27)

. {-

- 1 L4 1)' 2)‘ nh
"alr) = 2n n=§. L dh{'kpl[Aer(\ ) (kppP) + Ber(\ (ko] + Jwuyp
2 h

(P o) 4 B Dt 1 M (4.28)

- 1 =
le(r) = a n—z“ f dh

k2

. 2
- { juu, [Ae“rgl)(km") + BeNr(i )

ne Jjhz
(k,, 01} " e ;o (4.29)
in region V2 (b<p<=, 0<4<2m, -=<z<=),

- 1 » © l '
Eaelr) =20 n 2, {,, dh{[kpzre“r(l ) (kpzp)]

nh jh
S el LU UNO) R

} (4.30)
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Fo(r) =gy L L _
k2 -
P2 (1) iné _jhz —
Ty Ty (kpe)l el e , (4.31) =
oM =30 5 1 anl-lk, D (ko) s
2¢ 2m L ) pz m'n p2®
nh (1) jne jhz =
+ Jouyp ToHn (kpzp)]}e e’ . (4.32) -
"oat) = g I L '
k2
. - e jné jhz
[ juu, Tefln (k,,e0)} , (4.33) .
(1) L) -
where H " (£) = dE Hp (g), i=1,2. _
The unknown coefficients can be found from the boundary conditions.
The solution procedure is rather straightforward, hence the algebraic
details will be omitted. Only the key steps and final results are )
presented here. From boundary condition (4.15), it is evident that N
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r:_.

o™
' (1)
H
n (ko1a)
B = -aA a =
m mm * m (2) *
Hn (kpla)
Next it follows from boundary condition (4.16) that
. (1)* (2)"
Aekpl[Hn (kD) = agHy (kmb)] i
; nh (1) (2)
K * Jue b AplHy (kg b) - ag " (k, b) ]
' (1)* nh (1)
=T
ll ¥ potn (kpzb) * juwe,b T (kpzb) ’
and
kil K2
- (1) (2) -
- jue, AnlHy '(k, b) = aH " '(k  b)] = - Jue,

Finally, boundary condition (4.17) implies

rmHﬁl)(kpzb)

;
]
3
3
E

(4.38)
"4
4
-]
-4

(4.35)

(4.36)

(4.37)




nh [
[ (1) (1)

+

Jou b Hy (K P)Te = ko Hy (kpzb)rm]
1) (2)
A ( ]
K oy [y (kg D) = apH ™" (k)]
- A [Hm(k b) H(Z) k -9 h
and
K2 2
(
Solving
A
m
A
e
Q¢e
Qze
or

o k
2 (1) (*3%

2
Fou, o (k, BITe] + {- o, Ae[H,(,”(kmb) - ueH’(‘ )(kplb)}}

= dg,(ounh)

(4.36) - (4.39) for Ag, Ay, Te, Iy simultaneously yields

f
w
-3

m' m

= Yele * Yalm
Fe+0¢mrm’gs¢
r,+Q, T =J
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(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)
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l ~ ~
b Ce = Qq [szdw - desz} (4.44)
{ rn=10a [-Q Doy + 0,00 ] 4.4
m - Q, zeVs$ ¢e¥sz (4.45)
where (1)
k 2 H
a o2 n (k_b)
B, = (ez) (kpl) D (4.46)
(1) (2) ~
Dg = Hn (kp1b) - (!an (kplb) » g=e,m (4.47)
b (1! (2)' _
D, = km[Hn (ky,b) = aH (k,,0)] , g=e,m (4.48)
k HI (¢ py
k2 n P2
Te = Da (4.49)
2 2 (1)
- k) Wy (k,,b)
Y. = . 2 1
m Jwezb kpl De (4.50)
e K
2.2 L20(1)
Yo = - Ju (0] Peve = 5, M (k)] (4.51)
2
Pl
U = - oy Dem (4.52)
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H(1) A
nh n (kpzb) DeYe =
Q ' (1)! _hh_
zm = Fnlm = KopMn o (KpaP) = juy, DeYn (4.54)

and .
Y = Quelyy - Uy - (4.55) 3
: Thus all the coefficients have been completely determined. These .
’ in turn uniquely specify the scalar functions Vgi and ypj, i=1,2, from »
which the electric and magnetic fields in both regions Vi and V, are _}L

readily obtained via Equations (4.9) to (4.14). One may have already
observed that this solution is very appealing for analyzing problems -

- ¢ that involve printed dipoles or patch antennas provided the s, "ace

e current density has a closed form transform in the sense of (4.22). For
general volumetric electric sources, the present solution scheme will
certainly fail. In such event, the Green's function approach can be

if; used although finding the Green's function itself often presents the

= most difficulty; however, once the Green's function is found its formal

use in the solution is straightforward.
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C. MUTUAL COUPLING BETWEEN EXPANSION DIPOLE MODES

In this section, the field evaluation is based on the Green's
dyadic Ee for the dielectric coated cylinder constructed in Chapter III,
Ee essentially describes a linear relation between the electric field
and an elementary current source as indicated by (3.20). Hence the
-3 total electric field E produced by a distributed current source 5 is
) obtained through an integration (summation) process described by (4.3)

or (4.4).
In the analysis of mutual coupling between conformal microstrip
; antennas on the dielectric coated cylinder formulated by the moment
method, the chosen set of expansion dipolé modes plays a very important
role. The efficiency as well as accuracy of the analysis depend
- intimately on how closely an individual mode resembles the actual
current distribution on a microstrip patch, and on the transformability
of a mode in the Fourier sense (i.e., the sense of Fourier series and
|| Fourier integral). Furthermore, one's ability to accurately evaluate
the field due to a mode will also affect the quality of analysis in a
grand manner, The electric field obtained via the Green's dyadic will
be an exact solution since the dyadic function accounts for the
conducting cylindrical ground and its dielectric coating rigorously.

A microstrip antenna on the dielectric coated cylinder consists of

a printed conductor that conforms with the coated cylinder., The printed

conductor is typically very thin so that the current flowing on it can
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be regarded as a surface current. Hence it is appropriate to choose a

set of expansion dipole modes as described below:

I = {Ez(r): £=21,2,000, L <}

where

A IR I P N
Jz(r) - 4 ¥ ]
o :

€ Sz

f 5,

-

(4.56)

b 1

- +
Sg o= {r=(0,8,2): 0%b , ¢, -0,<4<0, *+¢, , z,.-Z,<2<z, 42}V, .

The symbol b* denotes a real number which is infinitesimally greater

than b, This essentially says the basis set = consists of L (finite)
expansion dipole modes. A typical mode 52 represents a surface current
density which vanishes outside a rectangular surface patch Sy on the
air-dielectric interface with widths 2b¢y in the ¢-direction, 2zy in the
z-direction, and centered at (b*, ¢gc, zyc). One may note that it is
not necessary to think of Sy as being a conducting surface patch. The

reason for requiring Sy to be located at p=b* jnstead of p=b is

consistent with the use of the Green's dyadic and also is closer to the
actual structure being modeled.

Denoting the electric field in V due to mode Jg, 2=1,2,...,L, by

IS AP IAS PEIa -
Ej(r) = oB  (F) + B  (F) + ZEL(F) , reV, , 21,2, (4.57)
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and employing (4.3) and (3.126), one will find

.
wy -
2 - 2 . o o _ﬂ_ .
Elp(r) L égds -!-u dhnzo e"{("o [Jn(up) + ann("p)]
! jNh h_u. ' 1 ':I
* [rgH (ab) + b fH (Ab)] + " [9,(up)+p R (up)] 3

h -
+ [3,00) + 135 4 H,00) Istan( =410, (F*)

+ I ) )+ " d
kK, [9p(up)+p H, (up) Jd H_(Ab)

n ) _ o
- Trp Ln(u0) + q M (up) I H (00) Jcosn(4-4)d ,(F) JeI" 2D
(4.58)
wu
£ - ® ® . '
Gl K dhnzo e (5 19, (up) + a M (uo)]

2

' jnh nh
* [l (30) + 335 M (0)] + L [, (uo)4py g (o))

’ h -
* [dgn () + k:,\b d Hn(2b) J)cosn(¢-9")d, ,(r*)

Jjnh
= (i kge [In(ue)#p i (ue) Jd H, ()

) '1:-2— [3p(ue) + ann("p)]ann(*b))51""(¢-¢')Jzz(;')}ejh(z-z ) ,

(4.59)




[}
l‘l2

L - —_
Ell(r) =< gn

o w 2
[45 1o T enllis (9,080 + pty(u)]
AR

' inh )
. [Tan(Xb) - i_:'ﬁ dan(Xb)])Sinn(¢‘¢')dz¢(r')
2 . |
+ ( _:T(; [Jn(up)ﬂ)an(up)]dan(Ab))COSn(¢-¢-)Ju(;.)}e.]h(z-z )
(4.60)

and similarly, using an appropriate form of t::eg in (4.4) yields

Wy

L - o L] n ]
Ezp(r) = - 8n gzds- { dhnzoen{(rp Hn(xp)[dn(xb)

A jnh h nh

' h -
+ (3B H (ab) + k:Ab CoHn(20)}])sinn(¢-0")9, (r*)

.‘j.M 1
+ (kg Ho(A0) [3, (Ab)+C H (Ab)]

n =y dn(z-2!
- o Bl (R0, (8) Jcosn( 4403, (T} T (4.61)
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w
)

'- E;Q(F) = - a- étds‘ {.dhnZoen {(H;(AD)[J:‘(xb)

s (A K (b)) + 2 nh _fh_
n n( ) ksz Ban(Xb))] + (kzxp Hn(kp) [ksz Jn(Xb)

- ' nh -
h + (jBan(xb) + kb ann(xb))])cosn(¢-0')dz¢(r')
dnh
- (kgp Hy (A0} [, (Ab)4C H_(Xb) ]
2B W ()M (b))sinn(e-0")9, ()i (272
kznnpn o=¢ zzr e ’ (8.62)
-
and

wy

2 ™ ™

L - jnh
Eop(r) = - 50 £ ds' {-#hnzoe“ {(- f%;‘Hn(xo)[dn(xb)+cnnn(xb)]

. L
A ' -
+ ;'2' Bnun(xp)ﬂn(xb))sinn(¢-¢')Jw(r')

A2 - jh(z-2')

) * (2 Hy(10)[9(0)+C Mo (15) ])cosn(4-6')3 (1" ) e : -
(4.63) i

It should be remarked that the expressions for E;p, E;¢ and E;z are ;i
c derived with the understanding that b+<p<0. Furthermore, in carrying ;;
out the calculation of the electric fields using the Green's function iz

according to Equations (4.3) and (4.4), the av(F')dv' term has been Eé

replaced by the SS(F')ds' term, where Jv and 55 denote the volumetric ;;

and the surface current densities, respectively, This {is necessary Ej

N because the expansion modes in = are surface currents. Clearly, éﬁ
. -]
.5 117 Z}
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(FaF') + G ,(FF)

+

r .
I -
P~ - =
Ea.j where §; and G52 are expressed by Equations (3.123) and (3.125),
b respectively.
-
[ The fundamental definition of mutual impedance between expansion

modes 32 and 3m is given by

-3 - -
Zom = - é E2(r‘) . Jm(r)ds , &, m=1,2,...,L, (4.65)

m

where the limiting process p+b* is implied. It follows from (4.56) and

(4.57) that z,q can be rewritten as

2n = - [E94(F)ng(F) + Ep, (M3, () lds .
m

Letting b*+b and defining

(4.66)

}—s% (2,m;n h)—-| {— _}
agl %,m;n, - - i -d’ 5 !
) ! - [e £ 450, (73 gy | STMNe) fedn(z-z)
Jog(2.msn,n) | mooh cosn($-9')
Zmc*Zm  dmctém 2,2, by b
= dz [ bde | RO Rzt RS bdeta, (b,6",20)dp4(b,0,2)
Zmc=Zm  Omc-%m ZocmZy -ty

sinn(¢-¢') | jh(z-z*) (4.67)

cosn($-4"')

—TTY Y
AL
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where a = ¢,z and B8 = ¢,z, one will arrive at a general expression

'l for zgm by substituting (4.62) and (4.63) into (4.66) as follows: ?ﬁ

w”z ® o . , ;:J
!5 Zom = * gn {’ghnzoen {(Hy(ab) [9, (2b) .?+

inh

' n nh nh
+ A
an(Ab) + ksz Ban(Xb)] * koAb Hn(xb) [ksz (Jn(xb)

+ CoHAOB)) + 3B (36)])3C, (2,mn, )

Jnh LI ~s
- (kgb Ho(Ab) [9, (Ab)+C H_(Ab)] - K Ban(Ab)Hn(Ab))Jz°(£,m;n,h)

RLL A ' ~s
+ (- kZb Ha(Ab) (3, (Ab)+C H (2b)] + K B, (AD)H, (3D))J ., (2,m;n,h)

% ~
* G Ha0) [3,00)4C 1, 00) )0, (1amin M)} 2,me1,2,.00L
(4.68)

From (4.68) one can readily obtain the mutual impedance between two
¢-polarized modes, two z-polarized modes, or two modes each with
different polarization.

The remaining quantities to be calculated in order to set up the
moment method solution are the elements of the voltage vector which, in
the present case, are defined as follows:

Vor (R - 3Py ezl (4.69)
1
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where 51 denotes the excitation current source. Assuming the constant
current filament model described in Chapter I for the planar slab case
still holds for both the coaxial feed and the microstrip line feed, each
of which joins a microstrip patch at (b,¢s,zs) with terminal current I;,
one can immediately write

- . - 5(¢‘¢5)5(Z'Zs)
Ji(r‘) = pI,i )

-
™
-
3

(4.70)

Making use of (4.58) and (4.70) in (4.69) will lead to

wy, I,
y 2§ o o l. [ jnh
277 gn _£ dhnzo en{(x [Yan(Xb) ¥ k,Ab ann(Ab)]

h [
+ {Hapne1) - lapm ] + 5 7 [, (0)

nh ~ jh
i GO I (B )ai(asemn) + G 4R 0BT (pm)

1 ' ~ jhzg
- k2 ann(Ab)[I(qn’n-l) -1 (qn’n)])dz(2;¢san’h)}e ,2=1,2,.-.,L,
(4.71)
where
‘ I'(p_,n) b ' .1
" = [u [Jn(uo) + H,(up)] do
I'(q,,n) | a k'S
P | b
= [J,(u0) + ’ ’ Hp (ne) ] . (4.72)
On_ a
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) b Pn |
= [ u[9,(ue) + l H (ue)] do (4.73)
‘ Haq ,n) l a 9,
and
T _] '_- |
I J (2;4,n,h) N
a . £ dS'Jzu(b,¢'.z‘)| cosn($-4') ie-th
Ji(z;¢,n.h) I ¢ | sinn(¢-¢') l
- , I~ |
4 b, .+ —a! -
- QCI Zdzl QCI A bd¢'\]2a(b,¢',z') COSﬂ(@ ¢ ) Ie JhZ
2, -2 -
2¢ “g ¢2C ¢2 sinn( ¢_¢| ) l
- - (4.74)
with a = ¢,z. In Equation (4.71), the integral I(qn,n-1) does not have

a closed form and hence must be evaluated by numerical means. However,
in the case of thin coating, where t<<a, I(qp,n-1) can be approximated

as

Hag,n-1) = u(b-a){J_y(ua) + q H _,(ua)]
u2(b-a)? '
* Ty [y () +qH G (wa)] (4.75)
which is obtained by integrating the two leading terms of the Taylor

series of the integrand,
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D. NUMERICAL EXAMPLES

The mutual coupling between two expansion dipole modes is studied

in this section, Figure 4.1 shows two expansion dipole modes on the

surface of the dielectric coated cylinder., Mode 1, centered at (b,0,0), ﬁi
has width 2w1=2bp; and length 2h1=221; mode 2, centered at (b,épc,25.), '
has width 2wp=2b4p and length 2hp=2z5. Both modes have only z-polarized
currents, Past experience with the planar dielectric slab problem in

Chapter Il suggests that a reasonable choice of expansion modes (basis

functions) is a set of piecewise sinusoids. Hence the currents of modes

1 and 2 are defined as

Si"[Kl(Zz-IZ'Z 1]

ic
; , res
2b¢zs1n(<zzz) 2

0 , elsewhere .

(4.76)

where Sz={;=(b’¢’z):‘¢'¢gc|‘¢z s 2=z, I<z,}, 21,2, and (referring to

Equations (2.65) and (2.66))
KZ = W uz Ez ’ (4077)
with _ - .
e +1 e -1 -1/2 J
® : ( r 10t
o 1 T €2 , + () 1+ 2b¢2) l . (4.78) .
L - - ﬂ
b
.- .
& j
@
t_ . 122 |
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Figure 4.1. Two z-polarized dipole modes on the surface of a
dielectric coated cylinder.
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It then follows from Equation (4.67) that, for =1, m=2,

~c . _ s . = ~S . -
J¢¢(1.2,ﬂ.h) = JZ¢(1.2,ﬂ,h) J¢Z(1,2,ﬂ.h) =0 , (4.79)
and
~c
J.(1,25n,h) =
z, + b+
212 g, *21%2 pgy  Jlar B bd'd,,(b,6,2')J,,(b,4,2)
22c7Zp 9% g "N
. cosn(@-&')ejh(z'z )
4x, x, sin(ng,) sin(ne,) .
N ¢1¢zsin(<lzl)sin(xzzz) n n cOS(MZC)Zl(h)ZZ(h)
jhz
ce € . (4.80)
where

cos(hzz) - cos(zzzz)

~

) = T2 W) L 2=1,2 . (4.81)

Substituting (4.79) and (4.80) into (4.68), with ¢=1, m=2, and
jhz . .
recognizing that the integrand, excluding e ZC, is an even function

of h yield
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7 ; sin(ne;) sin(ng,)
Z,, = A dh e W{n,h)
12 12 5 n=g N n
. cos(n¢2c) COS(hZZC) Z,(h)Z,(h) , (4.82)
where
A WUy K} K2
12 ° nk%¢l¢Zsin(xlzl)sin(xzzz) ’ (4.83)
= \2
W(n,h) = A Hn(xb)[dn(xb) + C R (b)) . (4.84)

Recalling the definition of Cp in (3.110), one can rewrite W(n,h) as

k2,2 1
K ¥ TG (M X (K (mmy ] (4.85)

j2
M(n,h) = () ¢

where
. O up w2

1(n,h) =-n T + (UI) x Tn , (4.86)
X2(n.h) = - “1) TR vl kl) L (4.87)

2 nph 2 p 22

= e\ f— =

L =6 - (4.88)
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;:]
H (2b) :1
Py = Hn(kb) . (4.89) .
' Jn(ua) ' :j
Pr = Jn(i0) = Yy Halud) s (4.90) '
' J;(ua) .
Q, = J_(wb) - i (na) Fa(s0) (4.91)
J,(ua)
Sn = Jn(ub) = Hn(ua) Hn(ub) » (4-92)
Jp(wa)
Tn = Jn(ub) - HA(Ua) Hn(ub) ’ (4093)

and = =
x = /k2-n2  , u = /k2-hZ , with Re\ Ads e mlrl>o .
2 1 u o (4.94)

It may be assumed that u without much to the loss of

17 %2
generality. In the evaluation of Z,, in (4.82), there are several

critical points that need special attention, namely:

a. It is computationally more efficient to perform summation over
n before integration over the h variable. This is due to the fact that

the sequence of cylinder functions

] ' N
{008 ,9, (£),H, (£)H (8) ]

can be generated efficiently for g£=pa, ub, and Ab., N is the maximum

index number which, as indicated in Appendix I, is dictated by the
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dynamic range of the computer being used to compute the sequence. The
number of terms summed in the series of (4.82) can be determined by

considering the well-known series:

1
nZ=g - (4.95)

w
H
0~

n=1

Supposing &>0 is an error threshold, there will exist an integer Npax
such that
Nmax'_l_

S - nzl N <s (4.96)
It is clear that using Npax as the terminating index value for the
series in (4.82) will also satisfy the same error criterion in the sense
of (4.96) since the the tail end of the series is dominated by E 1/n2
In general, N is no greater than Nyax. The evaluation of w(n,h),ax

for 0<n<N, is straight-forward provided the sequence

{Jn(a).J;(e).Hn(e).ans)}g
has been calculated. The calculation of this sequence of cylinder
functions is discussed in Appendix I which also deals with the case as
Imgse,
As for N<n<Npax, the evaluation of W(n,h) requires two separate

treatments:

1. When |£-n|>nl/3  the Debye's asymptotic approximations of
[} [}
Jn(g), Jn(g), Hn(z), and Hn(g) are valid and can be used to
reduce the burden to computing W(n,h). More specifically,

one can write
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A

() e (8) (2)

Hy (8) ~e 9, (&) (4.97)

where

LS
*(8) = n(tanhy-v)-j, (4.98)

. |
(2) l .5A, .75A, |

1
gn (€)= -j" llt n + n 2+oo- ’
o n tanhy | 7 tanhy (7 tanhy)

(4.99)

—

Ay =g - 24 coth?y , (4.100)

o2

N N
2 = 128 - 576 coth?y + 3456 coth Y » (4.101)

and

=3

coshy ='E . (4.102)

(2)

Directly differentiating Hn (g) with respect to £ yields

1 [ 1
@) o (5) [(2) L) -
Hy (£) = e 9, (&) * ¢,(€) 9o (&)}, (4.103)

o
3
——
o
g
n
a
o™ la
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=

where
| . ,

(&) = 4¢ #,(€) = sinhy . (4.104)

and
o
i 1 1

(2) d (2)
= 9n (£) = dg In (€)
zasinhZY\/ﬁ l@'n tanhy i ‘ 7 tanhy (7 tanhy) ‘
- I~ 1 3 3 n
. * | * 4n (cothy - Scothdy) + oo (4 coth?y - g coth*y
3 -
| . w7
] * 736 cothsv), . (8.105)
1

n The asymptotic approximations of Jn(e) and Jn(é;) are naturally
1

derived from the relation that Jn(g) = E{Hﬁl)(g) + Hiz)(g)].
ko
- 2. When |g-n|<n!/3, the so-called transition region, the asymptotic
-~ approxmations of Jpn(E), Ha(E) and their corresponding derivatives
- take on different forms which are described in [26] and will not be
- repeated here, It may be noted that in this region, both n and g

are sufficiently large. Again employing these approximations to
) compute W(n,h) will significantly improve the efficiency.
‘_.
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As a consequence, it is convinced that the mutual impedance between

mode 1 and mode 2 is reasonably approximated by

3 Ng:lax Sin(n¢1) Siﬂ(n¢2)
Z,, = A dh e W(n,h)
12 e | Lo Sn n n
. cos(n¢2c) cos(hzzc) . Zl(h)Zz(h) . (4.106)

b. Appendix G suggests that condition (4.94) will restrict the
contour of integration to the fourth quadrant in the complex h-plane.
In Figure 4,2, the broken lines denote the appropriate branch cuts
starting from the branch point h=k2(-k2) going to h=0 on the real axis
and then to h=je(-j»), Quite significantly, Appendix H indicates that
both P,/S, and Qn/Tph are odd functions of u, Hence, it follows from
(4.85)-(4.87) that W(n,h) is an even function of u. Thus no branch cut
is required for the square root function u, i.e., k., is not a branch

1
point,

c. There is at least one pole for each n on or above the real
h-axis (depending on lossless or lossy dielectric) between h=k2 and

h=Rek . The original integral for 2 , in (4.106) can be computed

1
along the contour T which runs along the real h-axis and overpasses the
the poles with infinitesimal half circles as shown in Figure 4,2, Such
contour requires the knowledge of the pole for each n, 0<n<Npax. To
avoid the numerical burden of locating these singular points, it is

computationally more suitable, and justifiable by Cauchy's theory as
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Figure 4.2, Proper contours of integration and branch cuts in the
complex h-plane,
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well, to use the deformed contour 'y which starts from h=0 going down
the negative imaginary axis to some point h=hj sufficiently away from
the singularities. Next Ty moves parallel to the real axis to some
point h=hp, with Rehp>Reky, then travels vertically upward to meet the

real axis at h=h3, The final segment of Iy extends from h3 to h=e, The

contour Ty is also shown in Figure 4,2, It should be cautioned that one
cannot let Imh; become too negative since then the cosine functions in .

'
(4.106) (e.g., cos(hzy) and cos(hzyc), 2=1,2) become exponentially

large. This will unfortunately cause numerical difficulty in

accurately evaluating zyp which is typically very small. ;i
d. The integral in (4.106) can be evaluated in three stages as
symbolically written below: ﬁ*
21, = é Q dn + & Q dh + £ Qdh , (4.107)
1 2 .

where Hy>Hi>Reky and

N

max sin(né,) sin(n¢;) :

Q(h) = A, nzo e W(n,h) - " A:]

-~

- * cos(ndy ) cos(hz, )2, (h)Zy(h) . (4.108) _’i

ﬁ14 Stage 1 refers to the integration from h=0 to h=H;, The upper limit N

;!_ H1 is chosen such that -#

- ;‘
o
208
o
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: | k2 - 2 N d T 1/3 4.109
ll e H| | >N an ‘ ky = Hy = N ‘ >Noay  * ( )

The integration is done numerically using Simpson's quadrature rule.

Stage 2 refers to the integration from h=Hj to h=Hs, Because of
condition (4.109), for all h>Hj, the function W(n,h) can be greatly
simplified by replacing the cylinder functions with their Debye
asymptotic forms. Taking the leading term in (4.99) and substituting y

by jv, one can deduce from (4.97) and (4.103) that

. 1
. (2) [ 2 =jle(siny-ycosy)-n/4]
- Hn (E) ~ HESinY e . s (4.110)

and

N L ! 1

(2) d (2) (2)
i Hy (&) = gg Hy (&) ~ £ jsinyl (8) (4.111)
0 where v(n,£g) is defined by cosy = n/&, It readily follows that

HD (g)

n j2[g(siny-ycosy)-n/4] ( )
- ) _~e , 4,112
w{2) ()
(1)"

o (8) jele(siny-ycosy)-n/4] : )

2)° ~ - p . 4,113

H,(, ) (&)

.
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and
. n
v(ng) = -3in [T+ 5 V- () ] . (4.114)

Employing (4.112) - (4.114) will enable one to obtain

Pn eX+1
s~ dsiny(n,ub) . (4.115)
n eX-1
Qn eX-l
T ~ jsiny(n,ub)
T Jsiny( Xol ’ (4.116)
where

x = j2{ublsiny(n,ub)-y(n,ub)cosy(n,ub)]

- walsiny(n,ua)-v(n,ua)cosy(n,ua)l} . (4.117)

It is now quite apparent that these asymptotic forms will reduce the
complexity of W(n,h) many folds.

Finally, Stage 3 refers to the integration from h=Hp to h=e, H,
can be chosen so that A=u=jh and |g&|>>n, with E=pa, ub or Ab,
Consequently one sees that y(n,£)=n/2, cosy(n,E)=0, and siny(n,£)=1.

One can further approximate that Pn/Sp=-j, Q,/Th=-j and r,=j. A1l these

approximations greatly simplify W(n,h) to
W(h) = ;STI:Z:Y , (4.118)
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which is independent of n. In addition, noting that

cos(hzy)-cos(x,z,)

Z,(h) = - h2 , (4.119)
~ cos(hz;)-cos{xy25)
Ly(h) = - h2 , (4.120)

and making use of trigonometric identities, one can write

o J2Ay, Npax sin(n¢;) sin(ne¢,) 9
J Q(n)dh = —— € cos(ne, ) ¥ I, ,
H2 nb(1+er) L n n 2¢ 951 ¥
(4.121)
where
- dh
I, =a, & cos(b,h) 13, 2=1,2,..0,9 (4.122)
2
with
1
a) =3, by = 123250 - 25| (4.123)
1
8, =75, by = |zl-zz| + 2, , (4.124)
1
43 =4, b3 = |11*12'22c| , (4.125)
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33 = 4 » by = Zyrzytz, , (4.126) =

cos{x;2,)

%= -7 3 » by = lzy-2, |, (4.127)

cos(x;z,) ”
36 = - 2 . b6 = 22+22c R (4.128)
cos(xy2,y)
a7 R 2 Y b7 = |21-22c| ] (4.129) "
-
cos(x,2,) )

38 s - ._—__2-—_- 0 b8 = Zl+22c » (4.130)

39 = cos(x121)cos(xp22) , bg = 25, . (4.131)
Finally, employing an integration by parts, one can verify that, for :.
2=112’°0',99

-1 .
2H2 » by =0 -

® dh 2 *

J cos(bzh) h3 = - - 2 )

Hay 1 | cos(bgHa) Ha )

2H, —H—z - bgs'in(szZ)l + 75 ci(b,H2), T
(4.132)
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where
. A 7 cost
c1(sz2) = - be t dt (4.133)
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is known as the cosine integral.
For illustration purposes, two numerical examples of coupling
between identical expansion modes are considered using the theory

developed in this section.
Example 1: E-plane coupling

The geometry of this example consists of two identical modes, of
length L = 0,15 m, and width W = 0,075 m., on a coated cylinder of
radius a and dielectric coating of thickness t = 0.003175 m, with
$1c = ¢2¢ = 0 and z7. = 0. The separation, S = zp., hetween the modes
varies in the z-direction only., The operating frequency is 633 MHz,
with e = 2,56 and tans = 0,0015.

In Table 4.1, results are given for the self impedance of a single
expansion mode (z11) on cylinders of various radii. It is evident that
z3] converges to the infinite dielectric slab value as the cylinder
becomes large. This is a good indication that the theory and analysis
techniques presented here are valid. Table 4.1 also shows the
convergence of the summing series (Npax), the contour of integration
To (h; and h3' and the limits of the three stages of integration
(H] and Hp).
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TABLE 4.1 ;;

SELF IMPEDANCE OF A SINGLE EXPANSION MODE 2

Radius a Self (
(%) Impedance 271 | Npax | M1 hy | Hy Ho
(vo]t-amp.%

R AT R TRTR O R IR R R b b nms:ah--:q*xmc—qlﬁ‘z"u
0.25 0.145-j0.429 62 -j0.2 3.0 | 50.0 | 70.0
0.5 0.118-j0.422 121 -jo.l 3.0 | 50.0 | 70.0
1.0 0.104-30.418 240 -j0.15 | 3.0 | 50.0 | 70.0
3.0 0.0957-j0.415 | 717 -jo.1 3.0 | 50.0 | 80.0

10.0 0.092-j0.419 |1998 -jo.05 | 3.0 | 55.0 | 70.0
= 0.092-30.399 - - - - -

Note: Xy = free space wavelength = 0,474 (m),
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Mutual impedance (z12) of the expansion modes is plotted in Figure
4.3 as a function of separation between the modes for cylinders of radii
a = 0.25%, 0.5\, 1.3y and 10Xy, where Xy denotes the free space
wavelength, It is seen that the coupling rapidly weakens for
$>0.3X%,5, Generally this is in agreement with the planar dielectric slab
case studied in Chapter II, It is interesting to observe that the
degree of coupling between two expansion modes in the E-plane
configuration varies slightly among cylinders of different radii. This
Teads one to conclude that the curvature of the cylindrical surface has
little effect on the energy propagating in the z-direction as surface

wave modes. The values of zyo are also listed in Table 4.2,
Example 2: H-plane coupling

This example repeats the data of Example 1 except that zy.=z5.=0,
$1c=0, and S=b4p. is the separation between the expansion modes which
varies in the ¢-direction only,

The results are plotted in Figure 4.4 and tabulated in Table 4,3,
It is apparent that the coupling in the H-plane configuration graduaily
reduces as the radius of the cylinder increases. This can be explained
by the fact that waves propagating circumferentially shed more energy
into the surrounding space when the curvature is large. 0One may notice
that, in the a=0.25), case, coupling is reinforced at S=1), which is
close to the back side of the cylinder relative to expansion mode 1,

This is due to the fact that waves which originate from mode 1 and
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TABLE 4.2

MUTUAL IMPEDANCE BETWEEN TWO IDENTICAL EXPANSION MODES o
IN THE E-PLANE

o)

KR
Y J....!.-/

MUTUAL IMPEDANCE 219 (volt-amp.)

al
~—~
> W
o
| —
PR
e,

i a=0.25X, a=0.51, a=1.01, a=10.0},
[ - = RS
tii 0.1 | 0.119-j7.528 0.095-j7.491 | 0,082-37.472 - e
- 0.25| 0.068-3j5.578 0.055-35.555 0.048-3j5.542 0.041-35.523
3 0.32{ 0.0504-j.1981 | 0.04331-3.2028 | 0.03894-j.2037 -

0.4 | 0.023+j0.016 0.023+j0.007 0.022+j0,002 - =

0.5 | -0.005+j0.026 0.001+j.020 0.005+j0,015 0.006+j0.014

0.6 | -0.021+j0.014 | -0.013-j0.013 |-0.009+j0.014 -

0.75] -0.020-j0.010 | -0.016-j0.004 |-0.014-j0.002 |-0.011+30.001 -
- 0.9 | -0.002-j0,021 | -0.004-j0.014 |-0.004-3j0.010 - N
o 1.0 | 0.011-j0.016 | 0.005-j0.013 | 0.001-j0.009 | 0.0-j0.008 -
3 ‘
Lﬂf{ Note: Ay = free space wavelength = 0.474 (m).
- - L
;{j S = separation, o
®
[ g
j; -
= =

~—d

;f? 140
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propagate circumferentially in opposite directions interact more
strongly when the paths of propagation are short (as for the case of
small cylinders), and weakly when the paths of propagation are long (as

for the case of large cylinders) because of the loss of energy along the

paths,

Figures 4,5 to 4.7 show that E-plane coupling is in general
stronger than that of H-plane. This is also attributed to the shedding
of energy away from the surface of the coated cylinder by the
circumferentially propagating waves. Even though there is no curvature
effect, it is interesting to recall that the H-plane coupling is also

weaker than the E-plane coupling in the case of the planar structure.

E. FAR FIELD CALCULATION

If the current distribution 3(?') = ;'J¢.(F') + EJZ,(F‘) is known
for a microstrip antenna, then the field can be computed for an
arbitrary r e V2. In practice, it is of great interest to know fhe
radiation pattern of the antenna. To this end, this section will derive

a general expression via the method of steepest descent to facilitate

the far field calculation.

By studying Equations (4.61) to (4.63), it becomes apparent that
any electric field component, due to 3, can be expressed in the

following form:

where
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. {Hﬁl)(ko)
T(r,n) = f f(¢,n,h) ‘ (1)1
B

|
! e gn (4.138)

cos |

f(4,n,h) = g(n,h) [ J_(r) i n(¢-¢')l e bapazt . (4,135

S sin

a=¢', z', S denotes the surface of the antenna, and g{n,h) involves
the expansion coefficients of the Green's dyadic. Furthermore, f(¢,n,h)
is an analytic function of the complex variable h along the path of
integration T (Figure 4.8) with end points at infinity. The choice of
T is discussed in Appendix G.

In the far zone, |rp| = |p/Eg:F7 | » =, one can employ the large

argument approximations for the Hankel functions:

1 2 j(Ap - nn/2 - n/4
W00y wf 7o SO 2T (4.136)

and

b (1) v/ 2 j(xp - nn/2 - n/4)
o Hy o (W) ~ 5 Thp € » 1=0,1,2,... . (4,137)

Using these approximations in (4.134) reveals that it is sufficient to
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Figure 4,9, The steepest descent path,
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- 2 j(xp - nu/2 - n/4)+jhz -
T(Ean) = [ flean,h) f oy @I AME WA g g 9
. r =
g}f which can be evaluated asymptotically using the method of steepest tf
h descent as |Xp| » =, o
b, - e
[~ Introducing the transformation -
- i
h = -kycosw (4.139) e
¥
and realizing that z = rcos8, p = rsinf, where r and 6 are the usual s
spherical coordinates, one finds that .

E p k%-hz +hz = - kzrcos(w+e) . (4.140)
Hence, (4.138) can be rewritten as )

k
T(ryn) = [ F(é,n,w) e 2r4(v) dw , n=0,1,2,... , (4.141)

r
w

where the contour ' in the h-plane is mapped onto the contour Ty in the

LA :Iv_bw‘-ﬂ—wﬁ.j,v‘_ _'—_v_v_ -
v N . -
P . A .
L TN IR ,
»

w-plane as shown in Figure 4.8, :3

q(w) = -jcos(w+o) , (4.142) =

i

2 and =

'@ . [ 2kpsinw -

o o-i(nn/2 + m/8) ) CT237TW

5 . F(o,n,w) = e arsing  f(o.n,-kpcosw) . (4,143) .

o =
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L
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The saddle point is given by solving

q'(w) = jsin(w+8) = 0 , (4.144)
WEW

It is clear that wg = n-8 is the appropriate saddle point. Observing

that

qlws) = -jcos(n-0+9) (4.145)

]
[

and

q"(ws) = jcos(m-948) = - j # 0; , (4.146)

one realizes Imq(w) = 1 along the steepest descent path (SDP), and wg is
a first-order saddle point since q"(wg)#0. Letting w=wp+jw;, one finds,

along the SDP,
Imq(w) = Im{-jcos(wr+e+jw1)} = - cosh(w;j)cos(wp+8) =1 . (4.147)

As wj+i=, cosh(wj)+e, thus cos(wp+8)+0 in order to satisfy (4.147),
This suggests that the SDP is asymptotic to wp=n/2-9 and wp=3w/2-8, In

addition, introducing the real variable B via the transformation

g{w) = qlwg)-p2 (4.148)
leads to
du 28 |
B =T g . (4.149)
| 8=0 q'(w) 8=0
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Upon applying L'Hopital's rule to the indeterminate form for dw/d8 in

(4.149) when 8=0 (i.e., w=ws), one obtains

o
x

q" (W = (4.150)

|
=
]
—
x
St
1]
A
1]
]
[
=
~
P -
.

Equation (4.150) implies the SDP makes an angle of 45° with the real
w-axis at w=wg, The SDP is depicted in Figure 4.9,

Finally, a general expression for the first-order approximation of
T(r,n) is given by [28]:

-2m kz'”ﬂ(ws)

T(ron) ~ ;;;57(;;3 Flo.n,w.) e » Kor >+ = (4,151)

Combining (4.136), (4.137), (4.138) and (4.151) yields

B
- Hy " (Xp) :
T(ron) = [ f(e,n,0) | 71y i I eI dn
T Hoo (R0
jkzr
1], _-i(n+1)m/2 e
~ , ; 2e J(n+1)n/ f(4,n,cos8) — » KaP > = L (4,152)

This completes the fundamental portion of the far field calculation.
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CHAPTER V
ASYMPTOTIC SOLUTIONS

A. INTRODUCTION '

In the last chapter, all electric fields and impedances are exact |
eigenfunction solutions since they are derived by the method of Green's
function which itself is expressed in terms of eigenmodes of the
dielectric coated cylinder. These eigenfunction solutions are employed '

in Chapter IV to calculate the mutual coupling associated with

2 L

microstrip arrays. In many situations, however, microstrip antennas may
n be used in the construction of phased arrays that are flush-mountable on
large cylindrical objects such as an aircraft fuselage or space

vehicles. The coupling between antenna elements plays a significant

|I role in the design of these arrays. In such situations where the

cylinder is large in terms of wavelength, it is best to use asymptotic

high frequency methods, as opposed to an eigenfunction series solution,
F to analyze the coupling effect because the eigenfunction solution is

poorly convergent, Moreover, the radiation mechanism is often obscured
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in an eigenfunction solution. On the other hand, the asymptotic
solutions are far less complicated from the viewpoint of computational -
effort and cost involved. More attractively, the asymptotic solutions
may be interpreted in terms of ray-optics thereby revealing the

radiation mechanism involved,

<N

Asymptotic high frequency solutions usually result from asymptotic
evaluations of the integral representations of Green's functions of the
circumferentially-propagating type. Section B will discuss the
alternative representations of the dyadic Green's function for the iz
dielectric coated cylinder. It includes the integral representation of |
the circumferentially-propagating Green's function from which one can
derive the residue series representation that provides nice ray-optical
interpretation, Section C devotes to the derivation of alternative
representations of the mutual impedance zj2 between mode 1 and mode 2 o
considered in the numerical examples of Chapter IV, For simplicity, a
two-dimensional (2-D) coupling problem involving two infinite conducting

strips is formulated and analyzed asymptotically. A numerical example

v'yfr ’

of the 2-D problem is treated in Section D. It serves to illustrate the

validity and usefulness of asymptotic solutions.

AN

B. ALTERNATIVE REPRESENTATIONS OF THE GREEN'S DYADIC

:Z: Integral transforms, such as the Laplace, Fourier, and Mellin

o transforms, can be found useful in many cases in converting relatively

slowly converging series into much more rapidly converging ones., lpon

e e
!
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examining the series associated with the dyadic Green's function which
converge slowly as the cylinder radius increases, it appears that the
Poisson summation formula, which is based on the Fourier transform, can ‘

convert these poorly converging series into fast converging ones, at

8
Sl .

least in principle. One form of the Poisson summation formula can be

stated as follows:

8
8
)
3
=
ieat T i i b

: 1
- t flan) =3 1 F(T3) . (5.1)
N==® N==0 :
3
- where
y o) = | f(vedf , (5.2)
K
and
1 2 -jEv
f(v) =27 | F(gleV~"de (5.3)

form a Fourier transform pair, and « is a scalar,

The utility of the Poisson summation formula in converting a
slowly converging series into a rapidly converging one may be
appreciated from the properties of the Fourier transforms. If f(v) is a
function which is concentrated near v=0, then F(E) is spread out over
the ¢-axis, or has an appreciable value for a large value of §; for

instance, if f(v)=§(v), then F(£)=1. Conversely, if f(v) is spread out
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along the v-axis, then F(g) is localized near €=0. A slowly

converging series with a typical term f(an) is then converted to a
rapdily converging series with a typical term F(2nn/a), since F will
be small for large values of n while f(an) decreases slowly with
increasing n.

From Equations (3-123), (3-125) and (3-126) one ohserves that every

component of the Green's dyadic is composed of functions of the form

[ S(0s0",0,0'sh)edN (22 )y .

-

(:l(.a.

where

‘ 9,(psp"sn,h)cosn(¢-9') ;

~

S(p,p' yds0'3h) =
n

€

)5 , (5.4)

[’

go(p,o‘;n,h)sinn(¢-¢‘) l

with g and g, being even and odd functions of n, respectively. Thus
one only needs to consider S in looking for the alternative
representations of the Green's dyadic.

The series S in (5.4) can be rearranged such that

>'_ 

[

Ei \" o (oot i)

_y *® Psp 3N, i -¢'
® S(p,p'y$,9'3h) = ] ' € gJn(e-¢") . (5.5)
Eh N=-o 'Jgo(pgp';noh) '

t;; - -

E'T-'.

(

[
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.‘f
b In addition, employing the large order approximations of the cylinder
. functions:
i
ez

I,(2) ~7 w | 2v s (5.6)
!B - =

1 - I—é'"|“

\ \Y

W'(2) ~35 (75 | &2 : (5.7)

' 4

I (2) ~ 3 (2) \ (5.8)
o

(1) 1

\2 ' v

K (2) ~ - 202 (2) : (5.9)

with z,v being complex numbers, one can easily verify that both 9% and

9, are square integrable over the interval (-=,«), i.e.,

A

2 "
= | 19 (p,0"5v,0)] N
2 {dv <= R (5.10) :?
-0 |go(0,0';".h)| | ::'.
v~ - - -
. Clearly (5.10) also implies |ge|, 'go|¢o as v+o, These properties of
: boundedness warrant the existence of the Fourier transforms of 9o and
- 9,. Hence the Poisson summation formula can be applied to the series in
‘ (5.5) to yield
'Y
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Sew.

R

\ |
o ga(psp'in,h) An(-9")

e 'jgo(‘)sp.;nsh) l

-_— -—

m o g.(p,0';v,h) ol 6ed') i
e | JIv(4-0') g2nmy
N=e® -c0 -J'QO(O,O';""‘) |

® ” g.(p,p';v,h) Col bea? ;
elPs ’ er|¢ ¢ | + jenmv dv

1]
—

14

NE=® ~c -j590(¢-¢')90(0,9';\’,h) '
where

’ 1 ,x>0

san(x) = : (5.12)

{ -1 ,x<0

Rearranging (5.11) will result in the following form:

ge(psp.;n’h) ejn(¢_¢')

P

n=-e | -jg (p,0';n,h) ‘

bd o ) ge(psp.;\’sh) —'
=}

n=0 -= | -jsgn(¢-9')g (p,0';v,h) l

- _ ]

. e : |64
! eIVle-atlaznm), Juizn-le-stlvenm) | g Lo
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The original representation which appears on the L.H.S. of (5.13) is
associated with the "radially propagating" Green's function., Whereas
the alternative representation which appears on the R,H.S, of (5.13) is
found in the "circumferentially propagating”" Green's function which is
particularly suited to emphasize the ray-optic behavior of radiation in
the shadow zone of the cylinder.

Since the integrand of (5.13) vanishes as v+= in the upper half
plane, the contour of integration (along the real v-axis) can be closed
in this half plane to form a new (closed) contour C,, as shown in Figure

5.1(a), without affecting the value of the integral, or symbolically,

oo

Y Jdv= § [ dv, (5.14)
n=0 -w n=0 C,

8

It is known that the simple poles of g, or 9, form an ordered set

{vp:Revp,Imvp > 0,p=1,2,3, ...} in the first quadrant of the v-plane.

One can use Cauchy's theory to evaluate the R.H.S. of (5.14) to obtain

the residue series:

I~ : |
hag b ReS[ge(p,p ’\’psh)] |

8

dv = j2n
v n=0 p=1 -jsgn(¢-¢')Res[go(o.o';vp,h)] '

n e
O —

| Jvo(14-9"1+2n7)  Jv _(27-|¢-4'|+2n7)
cle P te P

. (5.15)
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This residue series representation is important for analyzing the
diffracted fields in the deep shadow region of the cylinder,
Physically, each term in the series, corresponding to p=1,2,..., can be
interpreted as a creeping wave mode that creeps around the cylinder n

j v -4'|+2nm
times, n=0,1,2,.... The exponential terms eJ p(|¢ ¢l ), and

ejvp(2ﬂ|¢-¢.|+2n“) (which corresponds to waves creeping around the
cylinder in the direction opposite to that of the former) become
exponentially decaying terms which attenuate faster as [¢-¢'| become
larger, Since Imvp increases with p, the higher order modes are
attenuated very rapidly. So consequently one would probably need to
retain only the first couple of terms. Iﬁ addition, for large
cylinders, the n=0 encirclement is sufficient because contributions from
higher encirclements are negligible as the wave attenuates while
creeping around the cylinder. The exponential decay of the creeping
wave modes on the cylinder suggests that energy leaks away from the
cylinder surface into the surrounding space.

Analytically, one may note that Imvp, p=1,2,3..., is significantly
greater than zero. Hence, contour Cv can be deformed in such a way
that, along the new contour C ,(Figure 5.1(b)), the integration variable

v always has Imv>>0 thereby rapidly damping the encirclement terms with

n>0, Consequently one can write
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Figure 5.1. (a) Contour C, encloses the upper ha1f v-plane which
contains the poles of e OF 9o V1s V2secesVpeses
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|
» g.(p,p';n,h) ; .
S(p,0's0,0'3h) = I | © | elnte-e)
n=-m= -jgo(p,p';h,h) |
o | g (p,p';\’,h) | l_ s ' : |—||
~ | e | | edvle-ol 4 givian-lo-s M g
-» | =Jsgn(¢-4')g (p,p';v,h) l | |
® | Res [g_(p,p';v ,h)] |
~jom § | € P
p=1 | -jsan($-¢')Reslg (p,0"';v_,h)]
| ° P |
{— 3 1 ] —|
jvpl - i -t=
. pla-¢'l, oJvp(27-0-9 l). . (5.16)

The three representations of S in (5.16) are of different utility in
evaluating S, The eigenmode solution, the first form, is exact and
suitable for small cylinders numerically. The remaining two forms are
valid for large cylinders. In particular, the integral representation
can be used when |4-4'| is small while the use of the resiiue series is

0
most appropriate when |¢-4'| is large (in general, |¢-%'|>7p, A, is the

free space wavelength),
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C. ASYMPTOTIC EVALUATION OF 2y,

As the radius of the coated cylinder increases, the asymptotic
expansions of fields and impedances are deemed appropriate. The mutual
impedance z12 between mode 1 and mode 2, both z-polarized as shown in
Figure 4.1, obtained in Chapter IV is an eigenfunction solution which is
not suitable for asymptotic expansion, It is desirable to derive an
integral representation of z12 via the use of the Green's dyadic of the
circumferentially-propagating type. Adopting the same notations used in

Chapter IV, the z-component of the surface electric field due to mode 1

can be directly obtained from (4.63) as:

1 WHy o oo
E ,(b,9,2) = - > Jds' [ dn ]
8k, s - n=0
1
: jh(z-z'
, €aW(n,h)cosn(¢-9')J,,(b,4',2") SN (5.17)
h B where Jiz(b,,z) and W(n,h) are defined in (4.76) and (4.85),
> -
g respectively, and
b
9
r. -
- Sy = {r=(b,9,2):-4<4<8),-2, <242, } . (5.18)
<
P By definition,
¢
3 1
Ej 219 = - g Esy(hs9,2)d, (b,6,2)ds . (5.19)
b
o i
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where Jp,(b,é,z) is again defined in (4.76), and

o 5, = {r = (b,s,2) : L7V ZALALPYAL P ch'22<z<22c+22} . (5.20)

Combining (5.17) - (5.20) one can explicitly write

- zZ 42z + z
- Wy Tyt 1 " * in(z-2')
o 212 = g2 J o dz [ bd¢ [ dz' [ bde' [dhe .
- L B P ! -
) zo E(n,h)cosn(e-9')0,,(b,0",2'),,(b,0,2) . (5.21)
n=

Since W(n,h) is an even function of n, it follows from (5.4) and

(5.5) that
) +2 + ¥4
wy e Pacth 1 * = in(zez')
2= ,.2 1 dz [ bde [ dz' [ bdy' [dne .
2 ZpmZy  bpemby  Zp =4 -
I LA F (PP R (e N (5.22)
n=—w

Carrying out the integrations over the variables ¢,¢',z and z' yields

Al2 =~ = w(n,n) | in(eacte)  dn(epe-
— . X\n,n) 2 in(¢2c-92) |
212 =g I dh Zl(h)ZZ(h) ng n2 e - e .

. (5.23)

L 2 - -
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are specified in (4.81) and (4.83),

where Zz(h), 2=1,2, and A12

respectively. According to (5.13), (5.14) and (5.16), Z,, in (5.23) can

be written as follows:

Bz = - s s T
2,78 -i dh Z,(h)Z,(h) nEO _i W(v,h)

Yl[v) + Pz(v) - F3(v) - P4(v) dv

©

dh Zl(h)ié(h) I W(v,h) -
-Co n=0 Cv

H
i
— 8

Fl[v) + rz(v) - P3(v) - Ty(v) j dv

e
(o]
—

dhZ, (h)Z,(n) JRICUINE

rl[v) + rz(v) - F3(v) - P4(v) l dv |, (5.24)

where
£ - eJ'V(I¢2c+¢2-¢1|+2nw) . eJV(2“-|¢2c+¢z-¢1|+2nﬂ) . (5.25)
oy = eiv(|¢zc-¢z+¢1|+2nw> . ejv(Zﬂ-l¢2c-#z+¢1l+2n")  (5.26)
Pyl - ejv(|¢2c-¢2-¢1l+2n") . er(Zﬂ-l¢zc-¢z-¢1!+2nw) (5.27)
F4(v) ) ejv(|¢2c+¢2+¢1!+2nn) . ejv(2n-|¢2C+¢2+¢1\+2nn) . (5.28)
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and C, is the contour enclosing all the poles of W(v,h) in the upper

half v-plane. The closed contour integral in (5.24) can be readily

ot

evaluated by residue calculus to yield

s
o 'a e

j2ﬂA12 o ~ © £

2, =g | dnZ(MZ,(n) 1 L Res (v )] -
-0 n=0 p=1

RN

rl(vp) + rz(vp) = P3(Vp) - P4(Vp) I

|

j2ﬂA12 co ~ ~ ]
~TET [ dhzy(n)z,(h) §
-0 p=1

Res [W(v,m)] -

- - .
I =
:

| Fl(vp) + Fz(vp) - F3(vp) - Fﬁ(vp) | . (5.29)

As indicated in the last section, the alternative representations of z12
are derived on the basis that W(v,h)+0 as v+», and W(v,h) is analytic on
the upper half v-plane except at the poles Vps p=1,2,3,.... Also, the w7
approximations in (5.24) and (5.29) are appropriate for large cylinders.
It may be noted that the ray-optical interpretation of the residue
series discussed in the last section still applies here.
As far as evaluating the residue series in (5.29) is concerned,

only the first creeping wave mode will be sufficient for reasonable N

approximation due to rapid convergence of the series when the two modes

are well separated (one or more free space wavelengths apart), As their -

separation reduces, the series is becoming poorly convergent and the
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number of creeping wave modes will hence increase. lpon examining the
complexity of W(v,h) (equations (4.84) - (4.90) with v replacing n), it
appears that there is no known way to locate the poles of W(v,h)
analytically. One needs to resort to numerical techniques such as the
Newton-Rhapson procedure to find these poles. Such task is by no means
trivial. Thus, for small separations, it is more appropriate to
evaluate the integral representation of zjp in (5.24).

To demonstrate the usefulness and power of the asymptotic
solutions, it is best to consider the mutual coupling between two
infinite, z-oriented conducting strips on the dielectric coated cylinder
whose cross-section is shown in Figure 5.2. Strip %, centered at ¢=¢y,

2=1,2, with $1.=0, has constant and z-directed current 52, i.e.,

! 1
= o - Shas s | 9-0, <o, |z|<o, 2=1,2
Jl(r) = Jz(b,¢,z) = | " et 1 .

, elsewhere (5.30)

N)I

o

The mutual impedance z17 between strip 1 and strip 2 can be expressed as

oty Pact® 1
2ip == [ Ey(r)edy(r)de = - [ E, (4) Zhep b,
¢2c_¢2 ¢2C-¢2 (5.31)

where Ez(;) denotes the electric field at the surface of the dielectric

coated cylinder (or rigorously at p=b*), and its z-component is given by
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CIRCULAR CONDUCTOR
DIELECTRIC COATING

o Figure 5.2, Cross-section of the dielectric coated cylinder with two
- infinite conducting strips.
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Wiy $1 o o _ .
E; (4) = - [ bde' [ dz' [ dn edN(z-Z")
z 8k 2
2 -¢ -0 -00
1
° L1
lo EnN(n,h)cosn(¢-¢ ) 2661 . (5.32)
n.‘:

Making use of the results that

[ edN(@2) g0 predhZyn : (5.33)
and
[ £(n)s(h)dn = £(o) , (5.32)

one can readily convert (5.32) to

wu |
2 o W(n,o0) ; -in n
Eé (¢) = - 5 B eJn¢1 -e iney | dne . (5.35)
z BKSH n=ew " X

AT B R I 4
L

Substituting (5.35) into (5.31) yields

Y e,
z h ot Y

muz

= W(n,o0) ' in(42c-42+41)  Jnlepc+é2-97)
2 2 | e + e -
&1#2 nN==o n

¥4 =
12 2
16k2

l—

g b

Tl
in haL : ;
JSn(02c-92-91) _ in(actoz+h) ] (5.36)
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Next upon recalling identities (5.13)-(5.15) one will arrive at the
following representations of zj3:

WMo » = W(v,0)

2

Y4 =
12 2
16k2¢1¢2 n=0 -w V

——

Fp(v) + To(v) = Ta(v) = Ty(v) | dv

j
J 2 w - - —

— |
= 2 ) ) Res l W( vp,0)
8kat19y n=0 p=1 -

l 1(v + rz(vp) - F3(vp) - F4(v ) ‘
! 2 | , (5.37)

Yo |

where Tq(v), 2=1,2,3,4, are defined in (5.25)-(5.28) and vp, p=1,2,...,
are the poles of W(v,0) in the upper half v-plane.

As just explained earlier, for large cylinders, reasonable
approximation can be attained by ignoring terms which correspond to
creeping waves making n>0 encirclements around the coated cylinder,

i.e,,
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ey} » W(v,0)
2

!l 212 ~

2
16k ¢1¢2 -0 \Y

n I !‘1(\’) + Pz(\’) - I'3(V) - I'4(\)) l dv

PETR AR SR I TR
Ll L IR C .

Jma, -

. |~
" 2 L Res | w(“p,o) |
Bky410, p=1 | |

, . FLk L.'_’l‘

ll(\’)+r(")'r(\))'r4(\)p)'

‘ 2 . (5.38)
|_ v |

P —

Assuming H1=u, and then recognizing that

2 2 [2 2 Y["
0 AeyRe o homkg s wmykpchs e ky  ath =0 (5.39)

expressions (4.86)-(4.90) reduce to the following simpler forms: ﬁ

-3

—~ _ - »
. _ Q| | :

; 1090 = kg | Ve Tl ot ey . (5.40) E
= - ~ ¥
- 7 :

X,(v,0) = k / iy +r | (5.41) ]

'y = -y e N . ;‘1

2 2 rs, ‘h=0 v :

r.'..
IO
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¥3(v,0) = 0 , (5.42)
H:)(kzb)
[ ]
oy Ju(/epkob) Hy(Verkoa) = Jy(Yepkoa)H y(Verkob)
v
Sy = , (5.44)
h=0  Jy(VErkob) Hy(/erkpa) - Jy(/epkoa)H (/ekob)
and
0] Ju(/erkab) Hy(Verkga) - Jy(Vepkpa)Ry(Verkob)
v
T_\; = 1 [} . (5045)
h=0  Ju(Verkob) Hy(/erkpa) - JytYerkpa)Hy(/epkab)
Then it follows from (4.85) that .j’
Jzko Hy(k2b) ]
Mivo) = Tmpm »  (5.46) o
H\)(kzb) + Z\)(O)H\)(kzb) .4
where :{l
Py o
Zy(h)= - e, S, . (5.47) £
Employing (5.46) in (5.38) gives
l |
jnz © H\,(kzb) Fl(v)+r2(\’)-r3(v)-r4(v) I 3
2y m o
12 j ! I ? IdV, l
BDd10y = H(kpb)+Z (0)H (k,b) | v K .
(5.48) s
where ny = /us/es is the free space intrinsic impedance. .3
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ll It has been pointed out that the manner in which zj7 in (5.48) is

' being evaluated depends on the separation between the two strips. The
quantity b¢p. is a measure of separation between the strips. When bdo.
is small (typically less than a quarter of free space wavelength), the
integral representation of zy» is most suitable. When b¢y. is large
(typically greater than a free space wavelangth), the residue series is
an efficient representation of 217, Each case is dealt with

specifically in the following:

E: Case (a): bépc is small,

The exponential terms of the form eiv(27-1€]) in the functions
Te(v), 2 =1,2,3,4, can be dropped without sacrificing significant

ll accuracy. Hence one can rewrite (5.48) as
In,

Hv(kzb) sinv¢1 sinv¢2

0

!! 212 ~

v COSV¢2C dv .

a1 hy o (kD)4 (0)H (K,b)

(5.49)
o Letting a=/crksa, B = Verkob, and vy = kob, one may write
- K
8 ")
- 0( V)= =
L Hv(kzb)+2v(o)Hv(k2b)
i
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1 2 1 2

H sy - WD (aml? (o)
e D (@) - w1 gy
e [ (a)H )77 (8) = H"'(B)H ' (a) ] ]

1 1 1 2 1 2
+ Dm0y W @nl g - D (P () -i
(5.50)
Noting that Q(v) is a sluwly varying function, the contribution to the 3
value of the integral of (5.49) due to large values of v will be -
negligible because the remaining portion of the integrand, i.e., k
S1nvdy sinvdp ﬁi
v v cosvd, ., is highly oscillatory (and diminishing) for

large v so that the positive and negative parts of the entire integrand iﬁJ

tend to cancel each other, It is then clear that major contribution to
=)
the value of the integral arises from small values of v only. In o

Appendix J, the Debye's asymptotic approximations of Hankel functions

are employed to simplify Q(v) yielding <.
-
i, l -k, STnF (V) 5
12 - / S——— I ot
1Tb¢11’2 0 ’/erkg - (v/a)* cosF(v) -j/kz - (v/a)? sinF(v) -

- _|
sinv sinv -

" K (5.51)
v v CoSvipe dv ’ "

where

"1 - 5.52) i
F(v) = y82-v2 - \a2-v2 4+ v(cos v/a - cos v/8) . ( =
174 .
o
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.l Introducing new variable z = v/a and using the thin substrate

v \Y
approximations that boz = ag,, 2=1,2, b¢2c = a4, and ;'z a» One can

rewrite (5.51) as

%ﬂ kzn2 - sinfF(azg)
. ky - ¢ sinfF(ag) +j €k, - ¢ cosF(ag)
sina¢1; sina¢2c
a0 2 atyt cosad,. ¢ dz . (5.53)

Recognizing that

: / ) / 2 2
- F(v) = b Erkg-(\)/b)2 - a Erkz-(\)/a) +
- - _ _ _
| v | v
rs v coS /E_r-kza - COS /E_rkzb '
2 2 2 2
» (b-a) ferkp-zo =t [k -t (5.54)
L
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® as a » = while keeping t=(b-a), as,, a¢, and a¢,. constant, one obtains

in(tvk2-c2
2im k2n2 - sin(t k1 g%)
a Z.. ~ - =7\ - 5\
%12 " g \/kg-cz sin(t Jk{-cz) +j Jk%-cz cos(t kaifz)
o
sin(a¢1;) sin(a¢2c) iﬁ
. a¢1¢ T cos(as, z) dg . (5.55)
which is the mutual impedance between two infinite strips on a planar .
dielectric slab (grounded), with widths 2a¢1, 2a¢2, and ad,. distance =
apart, just as one might have expected. (5-55) is the final form used
for computing z,, when b, is small.
Case (b): bd,. is large
As just commented, 212 in (5.48) is most appropriately represented
as a residue series: I3
-nz - ‘ ._:
2y ~ ]
12 -
I - 5§ |
H - -
b (1) £ (V)41,(v)=T4 (v)=T4 (¥) 5
=2 (1) (1) | 2 R "
| 3y [Hy " (D#Z (0K, (M) | v | l"“’p
(5.56)
=
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where Y=k2b, and Vs p=1,2,3, ..., are the roots of

.
* A

PR
- .

(1) (1) "
Hy " (Y) + Z (0)H " '(¥) = 0 . (5.57) ]
n In principle, the roots of (5.57) can be located by numerical :j

techniques. However, the problem of finding even the first root would
seem to be a formidable one. It is then most desirable to be able to
approximate these roots analytically.

In applications, the thickness t of the dielectric coating is much

less than the radius a of the cylinder. Thus it is reasonable to

1
| BRAPIOR ) AR

= assume

lubl >> 1, |ub-ual = |ut| <1, (5.58)

where the second inequality means that the dielectric subtrate is

electrically thin, Then, as shown in Appendix K, it is justifiable to

write
e e
Z(h) =- ot , (5.59)
. which is independent of v, In particular,
. -
z x - T =
So it is evident that the roots of (5.57) will be reasonably
approximated by the roots of
L
N b
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1l o+ 1Py <0 , (5.61) 1

where 73
Yo = 1/Z (5.62)

is considerably less than 1 for thin substrates. Hence one would expect

the roots of (5.61) are just slightly perturbed from the zeros of
4(1) (1) (1)*
\Y)

v \Y

(v). It is known that the zeros of H (y) or H (y) when v = v,
lv| large, are given in first approximation by the zeros of the
appropriate Airy function combinations or their derivatives., This is

evident when one appeals to the Watson approximations [26]:

. jwl(o)
”E, D)~ - , (5.63)
T
(1)" JWi(O)
H ~ R (5.64)
\V (Y) mz»"n'
where
vy 1/3 k2b 1/3
m=(2) = (=) : (5.65)
:1 v-kobh
o="m = "W R (5.66)
wi(o) = /m (Bi(3) + jAj(0)) , (6.67)

with Aj and B denoting the Airy functions.
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Substituting (5.63) and (5.64) into (5.61) leads to

YS ' . -"
("m) w(0) - w(o) =0 . (5.68) ]

It is derived in Appendix L that the roots of (5.68), when (Yg/m) is

small, can be expanded into fast converging series given below:

2
t t 7t
P 3 g P55 Py
op(d) = tp +d + 3 d + 4 d + d + 18 d
— 3 _
t
p 5 7
+ | T+ |4+, p = 1,2,3 ., , (5.69)
where
Ys |Ys
d =@ , with [T <« 1 . (5.70)
Jjn/3
tp = Tpe . (5.71)

and T, are the zeros of A;(-1). The values of T, are well tabulated in

Logan [29], and only the first few are listed below:

T = 2.3381
T, = 4,0879
Ty = 5.5206
Ty = 6.7867
T = 7.9441
T = 9.0227
T; = 10,0402 :
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Ea It is clear from transformation (5.66) that the roots of (5.61) are
% related to the Up's as follows: —“J
vV = =
p = kb +m o . P =1,2.3, ... (5.72)
b Next employing the Watson approximations (5.63) and (5.64) in Q(v) "{
o defined in (5.50) yields
.\:f- :
n )
& - 3wy (a)/ (') 4
1 = Q(v) ~ ' -
- Wy (0)/(m2/w) - I 5w (0)/(m/7)
y . N
. ]
. wl(O)
y ~=1 1 . (5.73)
- m [Wl(c) " d W]_(U)]
Since W (o) satisfies the Airy differential equation, i.e., e
wi(0) - ow(a) = 0 . (5.74) -
one can readily verify that
L. _3 ' " 30 owl(o)
-r- 3v Wi(a) = wy(0) 3v = " . (5.75) -
' Using (5.75), and the fact that
—. "-
: ! m 1
: wl(ap) = YS wl(gp) = d wl(cp) ’ P = 1:2’3 s (5-76)
b
»,._ .
-
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one can compute

L 1 l w1 9p)
v | m [wl(a) -4 wl(o)] =2 [op- d2J . (5.77)
l_ _tv=v_or o=¢
P p
It follows from (5,77) that
1
Res [Q(vp)] = -7 1 . (5.78)
m7_ [op - d_2]

Making use of (5.78) in (5.48) results in the following residue series

representation of z

12¢
) - 1
2., ~ ) 1

. {rl(vp) + Fz(vp) - P3(vp) - ra(vp)} . (5.79)

Expression (5.79) is the final form used for computing Zy9.

Employing (5.46), (5.50) in (5.36), and making use of identities
(5.4) and (5.5), one can easily obtain the eigenfunction expansion of

the mutual impedance between the two infinite strips, i.e.,

sinn¢, sinng

® 1 2
nzo Eno(") n n

an

12 © 21, by

z cosné,. . (5.80)

Expression (5.%80) will be used to check the results ohtained by (5.55)

or (5.79).
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D. A NUMERICAL EXAMPLE

An example of mutual coupling between two infinite, z-oriented
strips on a dielectric coated cylinder is presented to illustrate the
effectiveness of asymptotic solutions. The antenna geometry and
pertinent parameters under consideration are specified below:

current on each strip - uniform, z-directed

frequency - 300 (MHz)

Ao (free space wavelength) - 1, (m)

radius of conducting cylinder -~ 5, (m)

thickness of coating - 0,005 (m)

dielectric constant - 4,

loss tangent - 0,0001

width of each strip - 0.125 (m).

The mutual impedance 237 is a measure of coupling between the two
strips. It is computed using two different asymptotic forms, which are
the integral representation in (5.55) and the residue series in (5.79),
and the exact eigenfunction expansion in (5.80) as well. The magnitude
of z17 obtained using each representation is plotted against the
separation S between the strips in Figure 5.3.

It is clear from Figure 5.3 that the coupling between strip 1 and
strip 2 weakens as their separation increases. The integral

representation agrees exceedingly well with the eigenfunction expansion

182

LR

e

- r
[N L~V Y

[eng
v,

A
A A

v,
&

LYr

4 .l’ -r' ‘l
oo

S




. Ot s e AT S A RE A A A NG R A I Ca G S Al ta &t AT B G B SR Y BCud B -G N gl o et il mte Dl oAV aih el ol o4 e
S0 IESL R B s LI T . - -

1000 o
1 & o ted0oMMr
. b—a=0005m

— AMPERE)

!
«

1 ll_LLllllO.l___l l_l_llll_lloolAl llllllllO!l

IZIZI (VOLT

-2
L1 nuullo
¢
®
X
X

n-i .............
o
{'_ “‘: 'll—'lﬁ'TT'I'lTlll"lY]'_"ll'lT]"1j]

E:: :- 0-0 O-S luo 105 2-0 2.5 3-0 3-5
[j: S(M)

Figure 5,3, Comparison between integral representation, residue series
and eigenfunction expansion of z12.
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for S<0.25),, and they start drifting apart for $>0,751,, with the

former showing greater degree of coupling. This can be attributed to E%
the fact that the integral representation stands for the coupling in the

planar dielectric slab case in which no energy is shed into the

surrounding space by the surface field while propagating along the -
air-dielectric interface, whereas in the case of the coated cylinder :
energy is continuously dissipated into the surrounding space while the éi

surface field propagates around the curved surface of the cylinder.

Hence coupling becomes gradually weaker as strip 2 moves deeper into the
shadow region of strip 1. The residue series, on the other hand, shows
excellent agreement with the eigenfunction expansion for $>0.75),. The
number of terms required in the series decreases as S increases. When
S=21y, for instance, 3 creeping wave modes are used, and only 1 creeping
wave mode is needed when S=3),. In the other extreme, a tota)l of 56
modes are summed for S$S<0.25),, It is quite apparent that a considerably

large number of modes will be required to provide a good approximation

of z17 when S=0. It may be noticed that the overlapping region for

these two asymptotic representations is 0.25X5¢S5<0,75),.

T
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CHAPTER VI

SUMMARY

Mutual coupling analysis is important in the design of antenna
arrays with low sidelobes, or where other tight control of the radiation
pattern is required., This work presents an analysis of the mutual
coupling between conformal microstrip antennas for the following
configurations:

1) rectangular microstrip patches printed on a grounded

planar dielectric slab (the planar slab problem), and

2) rectangular microstrip patches printed on a dielectric
coated cylinder (the coated cylinder problem),

It should be noted that the method of analysis proposed here can be
applied to microstrip patches of arbitrary shape; although rectangular
patches are treated for the sake of simplicity.

In analyzing the radiation or scattering from an array, one can
formulate the problem as an integral equation in terms of the unknown
currents flowing on the array elements. In the case of the microstrip

array, this integral equation would contain in it's kernel the grounded
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dielectric slab Green's function (planar slab problem) or the dielectric
coated cylinder Green's function (coated cylinder problem). The moment
method, which transforms the integral equation into a system of
simultaneous equations, is the technique proposed to numerically solve
this integral equation. In setting up the moment method solution, a
crucial step is the calculation of the self and mutual impedances
between the expansion and test modes. The central theme of this work is
the efficient computation of these moment method quantities. A model
has been provided to relate the moment method modal impedances to the
port impedances of the microstrip antenna array under consideration,

For the planar slab problem, a moment method solution for
microstrip antennas using the rigorous grounded dielectric slab Green's
function has been presented. Piecewise sinusoids are chosen as
expansion and test modes. Good agreement between calculated and
measured values of mutual coupling has been shown. An expression for
the far field radiation pattern has been derived via the method of
stationary phase,

It has heen demonstrated that the coated cylinder problem can be
solved using two different approaches, The first approach utilizes the
Green's function restricted to the case where the currents are
tangential to and also situated at the surface of the dielectric coated
cylinder. The fact that the source is being introduced only through the
boundary conditions simplifies the calculation, This is similar to the

method of solution for the planar slab problem. The second approach is
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based on the dyadic Green's function for the dielectric coated cylinder.

The use of the Green's dyadic enables one to solve a larger class of
problems since the source can be arbitrary, and is not restricted to the
surface of the coated cylinder. For this reason the Green's dyadic is
employed in this mutual coupling analysis, with the idea that it may be
extended to a more general configuration later,

The dyadic Green's function for the coated cylinder has been
constructed using the principle of scattering superposition which
requires the complete expansion of the free space dyadic Green's
function., The structure of the free space Green's dyadic has been
characterized for a general orthogonal curvilinear system, It is shown
that the Green's dyadic can be cast in a form that consists of two
solenoidal components, and an irrotational component which has the
simple form of a dyadic delta function. This compact form permits one
to obtain the eigenfunction expansion of the Green's dyadic most
easily, since only the solenoidal vector wave functions are involved in
the expansion, This expansion process is further facilitated by a new
set of orthogonality conditions which do not involve the p coordinate.

Very general expressions for the elements of the impedance matrix
and voltage vector (in the moment method solution) have been presented.
Self and mutual impedances of an expansion mode on dielectric coated
cylinders of various radii have been calculated. The results converge
to that of the infinite planar slab case as the radius of cylinder
increases, just as one expects. Mutual impedances, between two

expansion modes, on coated cylinders of various radii have also been
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computed. As expected, the magnitude of the mutual impedance decreases
as the separation between the modes increases, or as the cylinder radius
decreases., Expressions for the far field radiation pattern have been
obtained using the steepest descent integration technique.

A11 of the above calculations for the coated cylinder problem are
based upon eigenfunction expansions derived using the dyadic Green's
function which is of the radially propagating type, These eigenfunction
expansions are poorly convergent when the coated cylinder radius becomes
electrically large. For large cylinders asymptotic high frequency
solutions are preferable, because they are computationally more
efficient, and can be interpreted in terms of ray-optics. An essential
step in deriving asymptotic solutions for the coated cylinder problem
has been the conversion of the radially propagating Green's dyadic into
a circumferentially propagating type by using the Poisson summation
formula. Thereby alternative expressions for the mutual impedance
between two expansion modes have been obtained. These include the
residue series which lends itself to ray-optical interpretation, and the
integral representation which is in a form more suitable for asymptotic
evaluation. A numerical example of coupling between two infinite
conducting strips on a cylinder with thin dielectric coating has been
presented. This example serves to illustrate the validity and power of

asymptotic solutions.
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n This work presents an effective approach for analyzing coupling
between conformal microstrip antennas by combining the Green's function
A theory and the moment method. Only a narrow aspect of the coupling
~ problem has been considered. It is by no means complete. The following
areas are recommended for future investigation:

1. Extending the aysmptotic solution of the mutual impedance

between infinite strips to the case of finite length
patches.

N
.

Rigorous modeling of source excitation (which requires
L the Green's function corresponding to source inside
w the dielectric).

3. fGeneration of data on microstrip antenna characteristics
such as input impedance, radiation pattern and gain for
practical design purposes.

"
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APPENDIX A
DETERMINATION OF SPECTRAL FUNCTIONS
Expanding Equations (2.2) and (2.3) in rectangular coordinates and
making use of (2.4) and (2.5) yields the following:

In region 1 (dielectric),

3 1 22

Exa(r) = - ;; Vo1 * jwe, 3x32 ¥m1

R - B AL A
(A.1)
e (F) =X 1 32 ]
yi M= ax Yer * jwe; y3x Ym1 -
L.
. . oy
oo~ § ~ o =ilkxtkoy)
472 {i {kxwel + we, kykzl¢m1} e SMkzl(Z+t)dkxdky ’

(A.2)
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l. 1 32 2

EZl(r) ) juwe, [ g * erko ] Ym1

2 2
k® + k .
I B [ X y] ~ -J(kxx+ky)/)

- < a2 {qj. we, ¥np © coskzl(z+t)dkxdky ,
N (A.3)
'.;-.
— Wo(F 1 3? K]
: x1{(r) = Juu, 3x3z Ye1 * ay ¥ml

"k« -
= g o= Tx a1~ ~ “3(kyxekyy)

T g Vel ™ Ky ‘ cosk, (z+t)e dk dk -
i (A.4)
i (7 - — =2

_“_3 yl r= Juu, 3ydz Vo1 - ax Ym

ik« -
o 2 I Py 21 . ~ l -J’(kxX’fkyy)
y = a2 L{, .“’_“0 Yoy * K ¥ le coskzl(z+t)dkxdky ,

(A.5)
: - 1 32 2
H =— ( —=
21{7) Jou ( 222 ¥ &Ko ) Yoy
I PR R R e A A
a2 {i o (k. + k) Vg, sink ) (z+t)ak dk .
(A.6)

b
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In region 2 (air),

E Gy =X 1 3? -
x2'M) = 7 gy VYo ¥ juwe, 3x3z ¥m2 .
- ~ kykz2 ~ -j(kxx+kyy+kzzz) iT
T 4q2 {;[ {kyweZ ¥ WE,H ¢m2} € dkxdky : d
(A.7) R
EL(F) = = L 2
y2' ™ T ax Ve * juwe, 3ydz V2
= -3_2 TI kv, - ez vl e-J(k"HkyﬁkZ?'Z)dk dk
43° 1, x'e2 © we, m2 Xy’
(A.8)
- 1 32 2
Ez?.(r) juwe, ( 322 ko ) v 2
2 2
-y o= (kx ¥ ky) ~ -j(kxx+kyy+kzzz)
T 4n? {c{ we, ‘pe2 ¢ dk"dky ’
(A.9)
.
H (') = 1 32 _.2 :\::t
x2'F = juu, 3x3z Vo2 ¥ ay Ym2 ‘
"« —‘ =3
: o 2~ ~ -3 +k
-5 U| . v, - K ¥ T yy+k222)dk dk :
4x2 )/ wly e2 ~ “y'm2 | € Xy °® -
(A.10)
3
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yZ(r) - jmuo dyI3z lpeZ = 93X ‘sz
' ||—k “22 _| j(k x+k _y+k_.z)
_doe Yy 22~ oo IV 2
“anz I TaT Yer t Ktme le dk,dk,
(A.11)
- 1 2 2
z?(r - Juug ( 322 * ko ) Vo2
2, 2
+
o> (kx ky] ~ -J(kxx+ky+kzzz)
=aZ T e y dk dk_ .
Lo Wiy e?2 Xy
(A.12)

Enforcing the boundary conditions at z=0 (dielectric-air interface)

specified by Equations (2.8) and (2.9) leads to

Exl = F_X2 at z =0 (A.13)
Ey1 = Ey2 at z =0 (A.14)
sz - HX1 = sz at z =10 (A.15)

tJse of Equations (A.13), (A.1) and (A.7) gives
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y*ez * we ¢m2 - [kywel i weyE

kxkzlhml] Sinkzlt * (A.17)

r

Similarly, use of (A.14), (A.2) and (A.8) gives

3 kykz2 ~ ~ ~ .
xVap - v, Yoo = [kxwel + wege, kxkzlwml] sink .t . (A.18)
Use of (A.15), (A.4), (A.10) and (2.10) gives
kkaZ ~ ~ l ‘ kakzl ~ ~ ~

| W Ye2 - ky*mz | - l whg Ye1 ~ ky'ml | cosky it = -dJdg, .

(A.19)
Use of (A.16), (A.5), (A.11) and (2.10) gives
- R -
2 ~ ‘ ko L ~ -
{ WUO x!)ez + kx-Jsz l + \ muo vel + kxll)ml ‘ COSkzlt = -‘]Jsx .
(A.20)
Adding (A.17) multiplied by ky to (A.18) multiplied by kyx yields
k2 2 ~ 2 2 ~
(k, + ky)we2 = (kx + ky)wels1nkzlt
Yep = sinkzlwel . (A.21)
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e
X!
e
=

bt
4
»

Adding (A.17) multiplied by ky to (A.18) multiplied by (-ky) yields

2 2 .
(kx * ky) kpp . 3k 2 2 o~
we ¢m2 N wEgEL (kx ¥ ky) Y 1 S1nkZlt
~ -ika1 ~
e T e, S™attm (A.22)

Adding (A.19) multiplied by kx to (A.20) multiplied by (-ky) yields

k k
z? 2zl 2 ~ ~ ~
(k + k )p ap g (kx + ky)coskzlt Yoy * J[kstx - kasy]

(k2 + k2) -la
=L v v.] =k 3 "
. cosk_.t: + jk_.¥ = -k Jd . -

Wit zl z1 el z2%e2 X sy y sx (A.23) :

Adding (A.19) multiplied by ky to (A.20) multiplied by kx yields

‘........
I R

A I
1’-'or|. ’

2 2 ~ ~ ~

2 2~
-(k, + ky)-;:m2 + (k, ky)wmlcoskzlt = -J[kydsy + kxdsx]

r e % 'r"t‘
PR A

~ ~ ~ ~

2 2
o = =3
(e # k) ¥p + wpqcoskt] = -3k I+ kI ] o (a.20)

) e Ty ®
.
. o

Using (A.21) in (A.23) leads to

~ 0 ~ ~ .:""
y s — - o,
N AR (.25) 2
X y' e ~

ot

#

6—,-_-1
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muosinkz t

~ 1 ~ ~

' = kJd =~-kJ
Ye2 (kZ ' kz]D LN sy - "y“sx
x  ylle

—

(A.26)

where

De = kZ coskz. .t + sz

1 1 Sinkzlt . (A.27)

2

Using (A.22) in (A.24) leads to

o - rz2 ~ ~ e
!!! YV = 2 2 (k9. kI ] (A.28)

H
l
rLn

] (A.29)

’

3
N
1]
~
=~
x N
+
"
“« ™~
P—
o
—
b
7]
x
<
7))
<
)

‘."‘
yorl

Dm = erkz2 coskzlt + szl s1nkzlt . (A.30) 3
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APPENDIX B

MUTUAL IMPEDANCE BETWEEN TWO EXPANSION (DIPOLE) MODES

In this appendix, the exact expressions for the mutual impedance
between two surface expansion dipole modes on a lossy grounded
dielectric slab are presented. The mutual impedance between an
expansion dipole mode and an impressed source current, required in
(2.86), will also be presented.

Figure B.1 shows two dipole modes of current densities 3m and Sn.
located on the surface of a grounded dielectric slab with parameters uj,
and epeg, The ambient medium is free space with parameters ug and ¢q.
Mode m is centered with respect to the (x,y) coordinate system. The
center of mode n coincides with the origin of the (x',y') system which
is displaced from the center of mode m by a position vector (xq,yo).

The x'-axis is at an angle a with respect to the x-axis.
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Figure B.1. Two expansion dipole modes on a grounded dielectric slab.
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The mutual impedance between modes m and n is given by

z,. = - £ Ea(ro*r')ed (r')ds' (B.1) .
g
@ where the integration is over the surface of mode n in the z=0 plane; $
and :
4
r' = ;'x' +y'y' = x(x'cosa-y'sina) + y(x'sinaty'cosa) (B.2) %
o = xx° + yyo . (B.3) :
.

Without loss of generality, it is assumed that é
Ip(r) = mex(r) + mey(r) (8.4) E
. L ]
where r = xx + yy and 3

Jo(r') = x'Jnx.(r') + y'Jny.(r') . (8.5)

It then follows from (2.17), (2.18), (2.24) and (2.26) that, at z=0,

- - - kxkzz ~ =3k x +k
g Enx(ro*r') = 4n2 {I [k W ¢h2]e yyo
e'j¢(x'oy.oa) dkxdky (B.6)
‘ ]
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o e kykp2 ~ =jlkox +koy )
=TI I Sykz2 x"o " y’o
Emy(r0+r ) = {i [kxwez T weg b Je

3 ] '
- e-J¢(x ’y ’a) dkxdk

where

2 2
-k
X

2
k., =\/k -k , Imk . < 0, Rek
0 z

22 0 ’

z2 2 >

] ) = [} : ' - :
o(x'sy',a) = x'(k cosa + kys1na) +y'(-k sina + kycosa)

e T g, (W Nl

~ -kz]_Sinkzlt ~ ~

Voo = kJd + k.
m2 (k§+k§)Dm [ xmy 'y mx] ’

2 2 2
kzl = erko-kx-ky ’

t + sz

>
]

o kzlcoskzl smkZ t R

2 1

LA NN Gu5 Sum aan 2 &
AARAPRLER AR

Dy = ek, oc0sk qt + jk,ysink t

j(kxx+kyy)

dxdy ,

I] Ipg(xsyde

I (KoK

(B.7)

(B.8)

(B.9)

(B.10)

(3.11)

(B.12)

(B.13)

(B.14)

(B.15)
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and

(| -

w j(kxx+kyy)
me(kx,ky) = {i me(X.y)e

dxdy . (B.16)

Also one may note that the tangential component of Em(F0+F') on the

!, surface of mode n is given by
: EC(F +7') = xE_(F 47') + yE_(F +7')
0 mx' o my' o
: = X'[Ep, (F 7' )cosa + Ey(To*r)sinal
- + ;'[-me(Fo+F‘)sina + Emy(F0+F‘)cosa] . (B.17)

Combining (B.1), (B.5) and (B.17) yields

l! ?n 7n E (_ - . - - ) ]J
zZ__ = - r +r')cosa + r +r')si
~hp -wp {[ mx- o ) ? m.y( 0 ne

(X0

+ [-me(ro+r )sina + Emy(ro+r )c05aJJny,(x',y')}dy'dx' .

(B.18)
} Next let
E 3 N "n 7” -je(x',y',a)
- Jd o 1(k_,k ,a) = J . (x',y')e > dy'dx'
- nx 1] ]
f X’y '{n Wy "X
3
t hn Wy
L = [ 9 (xtyh)
'hn -Wn !
-jrx'(kxc05a+k sina)+y'(-kxsina+k cosa)l .
. e y y dy 'dx' (B.19) 1
[
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and

~ hp wn 3 ' '
'J¢(x Yy 50)
J . = (] (] [} )
ny* (koK sa) _{n _vf‘n oyt (X'ay")e dy 'dx
hn Wn
= I f Jny.(x'.Y')
-hn ~Wn
-j[x'(kxc05a+k sina)+y'(-k_sina+k cosa)]
. e y X y dy'dx' . (B,20)

Use of (B.6), (B.7), (B.19) and (B.20) in (B.18) leads to

-
j o= ”_ - kkaZ -
Zan T 7 4n2 {i | (kyweZ Y weg me)cosa
_ kykZZ _ -
- (kxwez - weg ¢m2)Sina \ JHX'(kX’ky,a)
I~ - kK22 . ~ kykzz ~ |
) } \ky‘l’ez ¥ weg "’mz)s‘"" ¥ (kx‘liez T weg lpmz)cosa:
~ -j(kxx +ky)
sy (ksk sa)) e ° "yl dk,dk . (B.21)

The mutual impedance between expansion dipole mode Ey and source

current 31 can he computed according to (2.46)

v, = {/ Em(F) . ji(r-')dv . (8.22)
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Since source Jj is modeled as a vertical filament of constant current

inside the dielectric, it can be represented as
Jilr) = 21 8(x-x.)8(y-ye) , ==<x,y<e , -t<z<0 (B.23)

where Ij is the magnitude of the feed current and (xf,yf) denotes the
filament location in the x-y plane, with respect to the center of
mode m,

Making use of (2.13), one can write

2 2
- -j = (kgtky) ~ -j(kxx+kyy)
£ - —> R A2
mz(r) a2 {i atge, oy © <:oskzl(z+t:)dkxdk.y .

(R.24)

Inserting (B.23) and (B.24) into (B.22) and carrying out the volume

integration gives

2 2
-JI1 od (kx+ky) ~ -J(kxxf+ky.yf)

V= .

m= a2 I/ wegerkyy Ym1 ® sink, tdk dk .

(B.25)

In both (B.24) and (B.25)

~ jErkz?_ ~ ~

YT Y + ]

ml (KZ#2)D, [KImx * KyImy ! (8.26)
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APPENDIX C &
< - EVALUATION OF AN OSCILLATORY INTEGRAL BY THE
STATIONARY PHASE METHOD o
This appendix presents the derivation of the leading term of the b
asymptotic expansion of an oscillatory integral of the form ;l
ol
Sey L T E -jker
E(r) = P {i f(kx,ky) e dkxdky (C.1)
where 1 = ;x+;y+;z; E = ;kx+§ky+£kz with IE] = ko; and f is a slowly s
varying vector function of kx and ky, and has no singularity near the N
stationary points of ker. -
\ Fquation (C.1) is a 2-D Fourier transform which can be evaluated -
Fif asymptotically by the method of stationary phase. The method of .
o . o
Ei3 stationary phase, simply stated, is based on the fact that, as |r| + =, L
f! the dominant contribution to the integral in (C.1) arises from the =
b - o .
:fﬂ neighborhood of those values of kx and ky which make the phase ker
;ff stationary, i.e., E-; does not change for first-order changes in kyx and
F.
o -
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ky. For those values of kyx and ky that make the phase ker vary rapidiy,

the integrand oscillates rapidly between equal positive and negative

values, and the contribution to the value of the integral is small,

2 2 2
First it is noted that k, =\/ko-kx-ky and
-_ T o \/_zﬁ 7
ker = rlk,sindcos¢ + kys1nes1n¢ + ko-kx-ky cos9 I (C.2)

where 8 and ¢ are the usual angle variables in spherical coordinates.

The stationary phase points are determined by a solution of

3 - _
9k ker =0 (C.3)
X
D -
" ker = 0 . (C.4)
Y
Ising (C.2) in (C.3) and (C.4) leads to
kzsin9cosd
ky = cos8 (C.5)
kzsin8sing .
ky - coso . (C.6)

. 2,,2 _ .02 .2 . .
Since kx+ky = k0 kz, it is seen that
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2 sin2p 2 2 .
z cosZe = Ky T K, -
and hence
kz = koCOSG . (C07)
Substituting (C.7) into (C.5) and (C.6) yields the stationary values of
kx and ky given below:
kxo = kosinecos¢ (C.8) —
kyo = koSiHGSin‘b (C.9) :
provided 9 * 7/2. 1In the vicinity of the stationary phase point ;;
(kxo’kyo) ker can be approximated by the first few terms of its Taylor
series, i.e.,
keF E‘I +?kk 2 (k -k 2l
oy = . - - - - .
r X X0 akx ¥ y yo) aky r l
l(kxo,kyo) - - | (kxoskyo)
L a2 - ‘
+ - - .
2 l(kx ) ™ + (ky ko ok, ker )
B B (kxo,kyg)  «  (C.10) -
(It should be noted that only the partial derivatives in (C.10) are
evaluated at (kyp,kyq).)
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It can be shown that

T VTR W e

23 T'Y'Y'i771

2
32 - . 1 kx|
k2 ker = -rcoss ([~ + ;;)
x (k .k ) 2 ik, k)
X0’ yo X0’ yo
—r (cos2e+sin26cos2¢)
= - 5~ (cos2e+sin?ecos?¢
kocos 8
2
3?2 - _ | 1 ky |
k2 ker = -rcosd ([~ *+ ;f)
y k k z 4 K
( 0® yo) (ko y0)
r
= - % cos2p (c0s%8+sin20sin2¢)
0
32 - . ‘ kxk
ak ak Ke°r = = I Cos9 "3
Xy z K
(kxo’kyo) (kxo’ yo)
r v 26 .
= - 5. sin?e8sin¢cosé .
kocos 8
Consequently the phase can be written as
Kep = - A(k -k )2-B(k -k )2-C(k - K -
ker = Kk r (kK o) B(ky kyo) Clk -k ) y kyo) (C.11)
) where
".
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A_ l—az_--l
Tz ker | , 5
(kxo’kyo) ii
2
o1 3t - -
B=-2 k"l 3
y (k. ok ) ’ -

X0’ yo
2 - _ |
C = - %k ak k"'

In the neighborhood of the stationary phase point flky,ky) is o
slowly varying, so it may be replaced by ;(kxo.kyo)- Hence the ]
asymptotic value of the integral for E(F) is given by N

[ 3
-jk.r 3

- - o 1
E(r) ~ f(kxo’kyo)e a2 j&
0

SIACk, k0 )24B(K -k 1240k ko) (k=K o) ]

: . =
- e dkxdky 4
- )
;I-j : S
- where Ry is a small region centered on the stationary phase point from 5
o

o which comes the major contribution to the integral. As noted .

'é; previously, for large r, the domain of integration may he extended over
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the whole (ky,ky) plane without introducing significant error because of
the rapid oscillation of the integrand for nonzero values of (ky-kyq)

and (ky-kyo)o ThUS

-jk
)~ Hgubygle © 357 1

J[A(k -k )2+B(ky-ky°)2+c(kx-k (k. -k_ )]

. e X "xo y 'yo
(C.12)
Next, applying a linear transformation T defined by
I"' | N N I |
Ky ‘ o1 SIVA + Kyo
! ky | t t//8 + kyo
to (C.12) yields
-Jkgr 1 = j[s2+t24+Cst//AB]
o _1 JIS S
E(P) ~ f(kxo' yo) a2 !i e |det J7|dsdt
- sdkgr 1 = j[s2+t24Cst//AB] dsdt
o e——— A
Fkyoskyole a2 [] e /AB (C.13)

where
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Completing the square for the s variable in (C.13) to obtain

o~ ¢ ot T T L e o —— heiun Aam aus .‘—.1
LJ
o
RS
aky 3ky 1
L as  at /A0
JT = = is the Jacobian matrix of T,
aky aky 1
as ot 0 /B

-jkor ) ct 2 c2
- - e L > 3l(s +77mm) + t2(1 - )]
E(r) ~ f(kxo’kyo) an2  VAB {i e dsdt .
(C.14)
Using the result
o ja(u-u_ )2 - .
JK: ° du = ";'eJ"/4
in (C.14) gives
-jkor _
E(F) ~ f(k AL
r) ~ xo’kyo) ax2 " /AB °
-jkor
P e 1
~ Jf(kxo’kyo) on Y4AB-C2 . (C.14)
It may be observed that
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1
=)
~N
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r

k cos28 cos“e+coszesin26(sin2¢+cosz¢)l
0

r2

r2

e |
2cos* e sin*0sin2¢cos2¢ l
0

1/2

1/2

kocose

4 - 4k2cos 8 (cos28+sin20cos2¢)(cos28+sin20sin?g)

Therefore, the leading term in the asymptotic expansion of the integral

in (C.1) is given by

E(F) ~

jkocoso e

‘jkor

2n

r

f(k

,K
x0’ yo
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APPENDIX D b
ORTHOGONALITY PROPERTIES OF CYLINDRICAL VECTOR EIGENMODES
Several orthogonality properties of the solenoidal vector
eigenmodes or wave functinns in cylindrical coordinates are stated and
proved in the form of lemmas. For the sake of clarity, shortand '::
notations are introduced first:
1. Sp designates a "+" or "-" sign, n=0,1,2,... (n.1) _
b~
|—1 m=n
2. 5mn = s MyN = 09192,...- (D‘?_) ..
_O m#n :_:_
—
P, —_ :-’.
- 3, e = 1 n=0 (D.3) ’
:;:f n 2 ml . -
o
q
F 4, ' = kg -h'2 | Imr' > 0, -=<h'<e
L~ o
L A= ,/kg - h2 , Imx > 0, -o¢h<e -
.
- ‘
& :
8 -
L -
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+ >
5. Ae, Tep = Aenren Aonron » M0 . (D.5)
o o0 _Aenren , n=0
Lemma 1
bt ® 2“ - -Sn - ‘Sm -
[an' [ dz | ode [Rey 0 x V x Mg (h,F)]e[Ter Mg, i(h*,r)]
- -0 0 0 0 0 0
4x2 s 3 S
= ™ 2 n — m
en Agn Agm pA Zn (XO) 3p Zm (Xp) Gmn .
Proof:

Substituting (3.46) into the integrand furnishes

© o 2n

-~ S .
L.H.S. = {“dh' {mdz {) pd¢ [Agn{-¢(x22n"(xp)§?: n¢)¥z(*)}]

- N —a S ' h+h'
. [rgm{+p(*)-¢(ap me(x p)g?:m¢)}]ej( )2

= ® 2n
= [ dh' [ dz £ od¢{[Agn :?: n¢][rgm :?z m¢]

S 3 S i(h+h')z
. xzznn(xp);; me(x'p)}eJ( ) .
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<
]

h One can observe that

:':." 2%
e cos cos
- é de [Agn sin "¢][rgm sin M¢]

2n
= ds (A i :
é b [ enI‘emcosn¢cosm¢ + Aenromcosn¢s1nm¢ + Aonrems1nn¢c05m¢

+ s i
Aonroms1nn¢s1nm¢]

I 2n Aenren n=m=0

T + =m#
"[Aen en Aonron] n=m#0

‘ 0 n#m

2n

— A, T, &
en " em ’
€ o' o' ™

and

[ dz MMNZ _ orsininyy (D.6)

Thus,

LH.S. = [ dh 4ﬂzA 2" 3 om
) . 4% 2 , ,
MH.S. {w { c gnrgmpx . (x) 20 In (A'p)8 }8(n+h*)

L 2,5, 2 Sm
© o Renlene?2, 00) 3 200G,
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Lemma 2,

® ® 2n

-Sp -Sm
{wdh {mdz £ pd ¢ [Agn p X ¥V x Nenx(h r)]. [rem Nem.(h ,r) ]

4112 3 S Sm
= - Re, Ten PAZ (Ap) z (x) & .
€, en ‘em ap In mn

Proof:

The proof is similar to that of Lemma 1 and will not be

repeated here,

Lemma 3.

L o 2n

-Sp -Sm
th Ldz cf) odo [Agn o X ¥ x Men,\(h r)]e [fem Nem.(n f]=0 .

Proof:

Substituting (3.46) and (3.47) in the integrand yields

L.H.S {“dh };dz ?"pdqb {Aen[ - A2 z (20 )g?:
P2 0e 50 el
. [ng[;(*):; iﬁﬂg Z; (A'p ):;: mo + 2 :;2 oo (! o)s1n ms |}
ej(h+h‘)z .
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Making use of (D.6) it is clear that integration on z produces the delta

function 2n8(h+h'), Hence,

o 2n .
L.H.S. = 2n [ dh's(h+h') [ ode {[-Ae, cin N#)(FTen Soe M)
-0 0 0 0
j’2h'm an( ) Zsm( \
. Ap A'p
kop n m
cos j(x*)2hn S

; S
_ sin n m, .,
+ [+Agn cos n¢][rgm sin m¢] kop Zn (xp) Zm (X D)} .

Clearly L.H.S. = 0 for n=m=0, and n#m. When n=m#0,

27 .
{45 [-Aeq gin M1(FTen coe N0
5 on sin en cos
2n
= d A . - : .
é b [ enI‘encosn¢s1nn¢ Aenroncosn¢cosn¢ + Aonrens1nn¢s1nn¢

- A T sinngcosn] =w[-A T +A T ] .

on'on en on on en
Similarly, it can be verified that
an sin cos
% ds [+Agn cos n&J[an sin M) = Tl-AgTon + AgeTen]

S .
N :
e B




(O

0 n=m=0; n#m
i*2h'n  jr'2hn
| 2n2(-Ag, T on*ron Ton) j dh's(h+h*)| ko ' ko
S LMH.S. = - 0 0
(Ap)Z "(x'p) n=m#0

0 for all m,n .

Lemma 4,

© o en

-Sn -Sm -
deh {wdz é Dd¢ [Agn p XV x Nenx(h r)] [rem Memk'(hl )] = O .

Proof:

After substituting (3.46) and (3.47) in the integrand one will see

o 2n

L.H.S. f dh' | dz j odé {Ae {';(*)]}'{rgm[‘;(*)‘;(*)]} :0 .

..........

......
..............



APPENDIX E

PROOF OF EQUATION (3.73)

The proof starts from Equations (3.69) and (3.71) which are

relabelled here for easy reference:

VxVxGel(r,r') - kIGel(r,r') =0 . (E.1)
VxVxE (r,r') - kZE (r,r') =0
mlt e 1'm1' ° ’ (£.2)
2 2 2

where ¥ e Vi, F' eV, and k; = wwe) = wue . Taking the curl of

(E.1) and then subtracting it from (E.2) leads to the conclusion that

g (FoF) = TGy (7or*) + W(7,7) (.3)

where 3 satisfies the same differential equation governing éel and aml'

ISP PPy

5

e
.

."jr

Aol

i

[




b
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Next letting E 1
respectively, due to electric current source J in V2 (with

parameters u, and ¢,), it can be shown that [19]

£y (7) = duy | B (FoF) (v
2

From Maxwell's equations, it is clear that

- - VXEl(r‘) uz = - -, -
Hl(r) * Sem "o é VxGel(r,r Yed(r')dv .

However, in order to be consistent with the role of the magnetic Green's

dyadic defined by (3.18), Eml must be sought such that

Substituting (E.3) into (E.6) yields

Hl(r) = | [ngel(F,F')+w(r,r')]-5(F')dv' .
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1 and H. be the electric and magnetic field in V

1’

(E.4)

(E.5)

(E.6)
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From (E.5) and (E.7) it is seen that

T

H2 =
p(r,r') = (:: - l)VxGel(r,r') . (E.8)

B

Using (E.8) in (E.3) gives

- - U2 =
(ryr') = — 9xG

ml W e (TF1) (E.9) B

R

v
v

.
e

[ ]
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APPENDIX F

DETERMINATION OF THE EXPANSION COEFFICIENTS
The Green's dyadic Ge for region V=ViUV2 is represented as

Go(F") = U(0D)G(FF1) + U(b-0)3, (FF")

= U(eD)[6,(FuF") + Bp(FuF )] + U(b-)G, (7\F)

reV, r'e Vs . (F.1)

From (F.1), (3.87) and (3.88) it is clear that

G (ryr') = Gyl ,r')‘ = [g,(rort) + RTALTLR S
p=b’<p |p=b+<p'
| Tdh ; il (Mo (h,F)*Aa Mo (h,7)+By NF_ - (h ]
- 2 ’ ’ o s
8 _ neg A gnx gn gnx gn gnx
“+ -, * - - 4 - -4 -
. Mgnx(-h,r ) + [Ngnx(h,r)+anN8nA(h,r)+DgnMgnx(h,r)]
: Noy (-h,r'))
g * Nepy (- . F.
vi nx ’ p=b+<pl ( 2)
L.
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Likewise, from (F.1) and (3.89) it is clear that -
Go(r,r ) = Gel(r,r') -,

p=b” or p=a ‘p=b- or p=a l

",

—j_ 3 ® .i‘. -t _ - - N

= 3n -i dh nZO 22 {[agnM%nu(h,rH BgnNgnu(h,r) ‘

- - - -+ - )

+ Ye Me (hsr) + To No (h r)] Me (-h!r.)

0n onu en enu ’ onA Eg

=4 - =+ - - - -

+ aenNenu(h,r) + bOnMOnu(h,r) + denNenu(h’r) 1

0o e e 00 -

- ek -, s

+ fOnMonu(hsr)]Nenx('h’r )} - . (F.3) .

e e ) p=b~ or p=a o

These 24 unknown coefficients (Ae,, Be,s Ceps Deys ens Beps Yens Tens £

) 0 0 0 0 0 0

3aqs bepys de, and fe,) are being determined from the 24 linear equations R

0 0 0 0 i
derived from the following set of boundary conditions (as defined by v
Equations (3.82) to (3.84)): ;&
o x o (R =0 ;

o o1\ I = (F.4) »

p=a

TN T

p X a2 r,r l +‘ p X GEI(r’r ) ; (F.S) é;

p=b p= =
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- 3
| . .-

!M::1
!.
[
| - = .- ~ M = |
‘l‘ p XV X Gez(r,r') += p X " v x Gel(r,r') . (F.6)
p=b p=b-
5
L
f? Furthermore, it may be helpful to recall the explicit expressions of the
(9% - -
M and N functions which are given below for the sake of convenience,
K
L.
- -+ - T oan s sin ~ 3 s cos -] jhz
4 = - - -
t Mgn)\(h’r) Fop p Zn(XD) cos né ¢ 3p Zn(XD) sin ne |e
- - (F.7)
- Sy = | SR ey €05 hy g M Sy sin
L Cnatt Pk 3o “n sin Ko Lp\AR) coq N9
(]
. li t cos _1 jhz
vz w2 (xe) Sone e (F.8)

R0

+ _ (1) - . =[k2-n2
where Zn(xp) = Hn (xp), Zn(Ap) = Jn(xp), and A =\ k2-h2 |, Imra>0. For

d
simplicity, Hgl)(Xp) will be denoted by Hn(xp). and EE'f(E) by f'(£)

a1

gf throughout this appendix.

o Substituting (F.3) into (F.4) produces, for n=0,1,2,...,

e

2 o x [aeMe  (N,7)+Bo N (h,F)+veMer. (hyF)+ 10 Nan. (hor)) 0

v e On ‘0 Ye To =

‘ °n enu ’ an dnu ’ N gnu ’ n gnu 4 o=a

- (F.9)
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b X [aenNen (h, r)+bonMo (h, r)+denNen (h, r)+fonMon (h,f)] =0

0o o e e e p=a
(F.10)
Using (F.7) and (F.8) in (F.9) and in (F.10) yields, respectively,
2{-ul oy (42) + Yepd, (ua)] £ A% (g H (wa) + tord (a)]}<%
en’n gn n T kja gn n'¥ gn n\H#a) llgjp N¥
. 2 ;
“jhz  * ue sin jhz
R k. [sgan(ua)+rgnJ (wa)] o nee "} =0
(F.11)
and
2 {-ulbogH (ua) + fo.0 (wa)] ¥ T [ag H (ua) + dg d_(ua)]}S'"
:n n gn nH kja *"en"n ¥ gn n'¥ cos "?
RO ; (- ¥ (a0 H_(na)+dg J cos jhz,
k, agn ua en°n (u a)]sm b=0.
(F.12)

Next substituting (F.2) and (F.3) into (F.5) gives, for n=0,1,2,...,

- - - -4 - -4 -
p X [Me,y(h,r)+Ag Mg o (h,F)+B, Nony(hsf) ] =
onx on onx ’ en enx ’ p=b+

- -+ - -+ - - - - -
o x [ae M, (N, F)+8o No- (h,F)+ve Mg  (h,F)+1o Ng. (h,F)]
on onu en enu ’ on onu en enu ’ o=h"

(F.13)
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and

a

= - -+ - -4 -
p x [Neqr(n,r)+CeoNeny (h,F)+Dg Moo, (hF)] . =
0 o0 e e p=b

-~ =4 - =4 - = - - -
p x [agoNen, (hsF)+bo Mg  (h,F)+de Ng  (h,F)+fo Mg (h,F)] .
on onu ’ en enu ’ on onu ’ en enu b..

p:

(F.14)
Using (F.7) and (F.8) in (F.13) and in (F.14) yields, respectively,

- ' ' jnh cos
z{-x[Jn(xb)+Agan(xb)] * k,b [Bgan(xb)]}sin né

- ﬁ sin - ' '
+ 4’{' kz B‘.;,"HH(M.")cos M} ) z{-u[ugﬂHn(ub)”gan(”H]
jnh cos ~ w2
R o
kb [Bg"Hn(ub)+TgnJ"("b)]}sin o + ¢{= 1 (8o (u0)

1
sin
+ tgndn(ub)]cos no} (F.15)
and

~

' _ Jnh sin
z {-ngnxnn(xb) * b (3,000 +CeH (Ab) ]} o no
0

" A2 cos : ' ' jnh
+ ¢{-[Jn(xb)+cgan(Ab)] k2}Sin ng = z{-u[bgan(ub)+fgan(ub)] * b
. 2
‘ sin L cos
[aeqfy (D) + deqd, (u0)]hioq ne + ol {aeH, (u0) + deqd (wb)]}iyn s
(F.16)
Finally, substituting (F.2) and (F.3) into (F.6) gives, for
n=0,1,2,.0.,
~ 1 - - -4 - -4 -
o x T{7xMgp, (h,r) + Ag TxMg , (h,r) + By xNg,,(h,r)} 4
2 0 0 e e p=b
~ 1 -4 - -4+ - - -
= 0 x e TxMe, (h,F) + Bo WxNo, (NuF) + Yo, TxMe, (h,F)
1 o o e e 0 o
+ TonVXNanu(h,':)} - . (F017)
e e p=b
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and
p X uz{VXNenA(h ,r) + CenVXNeM(h r) + DonVXMon)‘(" r} ot v
- o x 1l -4 - -4 - - - e
P ul{agangnu(h’r) + bganMgnu(h,r) + dganNgnu(h,r)
-- - =
+ TonWxMg, (h,r)} . (F.18) "
e e =
Employing (F.7) and (F.8) in (F.17) results in L
H
i , dnh sin -
z 5 {- kszonH (Ab) = 7 [Jn(xb)+Agan(xb)]}cos né -
.“,'
" Ll_], 2 coS ° ' ! =
+ ¢ uz{-x [Jn(xb)+Agan(xb)]}Sin ng = z{—klu[Bgan(ub)Hgan(ub)]
_ dnh sin
3]
- cos
+ of-w {“en (ub)+vend (ub) J}gin N® (F.19)
and <
x.
su ' ' J_ﬂ cos
z {-kzx[an(xb)+cenn (Ab)] * Do AODY}SI ne ~
Z ~ M1 sin ;
Fl + ¢ {2 Dy, (Ap)}2o0 n9 2{- klu[aenH (ub)+dEan(ub)] -
[ -
r:_-- lﬂ—- COS
"- * b [bOn n(ub)+f0n‘] (”b)]}sin nd ':'
- -
. - b ysin
5 + of-u?] onHn (40)+fond, (ub)Jleps M® - (F.20) .
;‘;j e
o -
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“
A

For n=0,1,2,..., (F.11) must hold for all ¢ and z, thus one can conclude

that
Boan(ua) + rOan(ua) =0 (F.21)
e e
[] []
agan(ua) + anJn(ua) =0 . (F.22)

Using the same argument one can see from (F.15) that

' ' jnh Jjnh
deq U, (1D) + Yenud (ub) ¥ Bon %op H (wb) ¥ Toq kp J. (ub)
0 ] e 1 e 1

. Jn_h [
- Aeann(Xb) * Bon kb Hn(xb) = XJn(Ab) (F.23)
0 e 2
2 v 2

Bgn kl n(ub) + Tce)n kl n(ub) - Bgn k2 Hn(kb) =0. (F.24)

Similarly, (F.19) implies

_mh joh ' -
F agn b H,(ub) # an b J,(ub) - Bgnklan(ub) - Tgnkxudn(ub)

01 jnh L2 ' H1 joh
= Agn My b Hn(Xb) + Bgn Wy kZXHn(Xb) =3 u2 b Jn(kb) s
(F.25)
2 2 2o, LA N
ignu H (ub) + anu J,(ub) - Agn up MHA(AB) = TETA20 (D) . (F,26)
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dg M (na) + de,d (ua) =0 (F.27)
0 )
boan(ua) + foan(ua) =0 . (F.28)
e e
Equation (F.16) implies
_ gon R 1 :
e 0 1 e
t Co. T W (ab) + Dy A (Ab) = 7 A 5 (3p)
* — + =7 A
S" k,b Un gn n k,b “n *
(F.29)
u2 u2 xZ xZ
a T H b) + d v J b) - T H (X = .
gn kl n(u ) gn kl n(u ) C(e)ﬂ kz n( ) kz Jn(xb)
(F.30)
and (F.20) leads to
K uH 1L Ko (ub) ¢ £, AN 3
- + = + - o
agn 1eH (ub) bgn b H (ub) _ dgn pud, (ub) on © J, (ub) >
L (n) 7 0y Ay - R &
'y + an u, k2 n(k ) * 2" 4, b n(kb) " kZXJn(Xb) (F.31) =

A second group of equations corresponding to (F.21) - (F.26) can be q
similarly obtained from (F.12), (F,16) and (F.20). For each

n=0,1,2,..., and for all ¢, Equation (F.12) implies




bonu?H, (ub) + fonu?d (ub) - Doy v AZH (Xb) =0 . (F.32)
!! e e e

. From (F.21) and (F.22) it is obvious that :Fi
»‘ . ..
In(ua) R
B 2 - T s
-m 0 o F.33 i
% On Ho(ua)  On (F.33) =
. X
o3
e Jn(na) S0
GEn = -0 Ye -~
“ 0 Hn(”a) o" (F.34) T

and from (F.24),

ko 2 A
u oz .
¢ Boy, = ¢~ (T) BonH. (ub)+ To.d (ub)] . F.35 N
b ol ky ‘A Hn(xb) [ on"n e n . ) =
l' Equation (F.35) can be used in (F.23) to obtain 7*#
1 ' W ' ' s
Ag" " Hy(30) {-Jn(Xb) Y [ugan("b) * andn(ub)] S
!% jnh 1 w2
b (2 - 1) [Boan(“b) + Toan(Ub)]} . (F.36)
. 1 e e
- Next one can obtain from (F.26) that
t
b
1 Y2 w2
. Agn " H,(2b) (-9, (ab) + u1 () [°§n”n(“b) * Yg"Jn(”b)]} » (F.37)
v
[
. and
o 229
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1 jnh Jnh w2
upg b [Agan(”’) + 9,00 =5 () [GSan(“b) * YSan‘“b)] .
(F.38)
One can also rearrange (F.25) such that
By o g L joh
B(e)n u kZXHn(Ab) =+ 2 b [Agn ()‘b) +d ()‘b)] [ngﬂn(ub)
] []
0 e e
3 Combining (F.38) and (F.39) together leads to
1
r. 1 W2 ki y ' joh w2
- Bo. = « — . 35— -
.. O T (D) T {k )\ [Sgn” (ub) + Tgn"n(‘b)] kon (a2 = 1)
L
' * [oegH (ub) + vend ()]} | (F.40)

0 o

Equating (F,36) and (F.37), then using (F.33) and (F.34) yield

J' (ua)
1 Y2 op 2 n__
H, (3b) (-9, (ab) + M1 () [95(ub) - Hp(ua) Hn(“b)]an}

J* (ua)
|1 IR B, dnh 1 w2
T HA) [9a () 501 ub) - ey (0 Iven * 4 y (2 - 1)
J, (ua)
- [9,(ub) - W”n(“b”‘gn}

which can further be rearranged to get
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J;(ua)

J' (ua)
n ' ' E&
Hn(ub)Hn(Xb) R

n { HA(ua) Hn(ub)Hn(Xb) - H!

L]
Y

x Ye
o alua)

u ' ! ' '
+ -2 % Jn(ub)Hn(Xb) - Jn(ub)Hn(Ab)} = Jn(lb)Hn(Xb) - Jn(Xb)Hn(Xb)
J,(ua)

o (wa) Hn(ub)]Hn(xb)rgn . (F.41)

{ 2
s ET LI - 10 () -

Making use of the observation that

_Jc

Jn(Xb)Hn(Xb) - Jn(kb)Hn(xb) = b ’

Equation (F.41) can be used to express Ye, aS follows:

)
j2 1 X
== T 4+ —
en " mub X, © X, "o (F.42)
where
2 ' '
Xo = [ 5 Jp(ubIH (Ab) = 3 (ub)H (Ab)]
Jn(ua) i u ' '
TH(na) (5 Hp(s0)H (b) - 4 (ub)H (30)] (F.43)
J (ua
M LI QI )
1 = klb u [kx) - 1][Jn(ub) - Hn(ua) Hn(ub)]Hn(Xb) o (F.44)
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Next equating (F.35) and (F.40) and rearranging gives

2
ko '

2 w2
K, A [Bon (ub)H (Ab) + tgndn(ub)Hn(xb)]

Hy ' 1
= — {ukl[sgan(ub)Hn(xb) + rgndn(ub)Hn(xb)]

Hy 1
_dnh Kiw o2 |
" n LG - 1][agan(ub)Hn(xb) + andn(ub)Hn(xb)]} ' (5.45) ﬁi

which can further be manipulated by using (F.33) and (F.34) to give
J,,(ua) (kz 2 . b
T H (ua) [‘kl) A Hn(ub)Hn(kb) T m Hn(ub)Hn()‘b)]Tgn
S ky 2
L f— ad ——
F + (60 3 (ub)H (Ab) - J (ub)H (Xb)]rgn
L 3 ua
gm0 o
- =t uy kb [(A) - 1J[J_(ub) - Ha(ua) Hn(ub)]Hn(Xb)an (F.46)
S
b
- or
e (X2 X3)Tpq = % Xy Yep (F.47)
F’L= e 0
where

® 2w ' Y2 ...:.
- Xz = [(G) 5 Jp(ub)H (AB) = 75 3 (ub)H (3b)] (F.48) ]
[ '
b
.
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£ [} 12_ ]
X3 = A (pa) [(kl) s Hn(ub)H_(Ab) - " H (ub)H (Ab) ] (F.49)
J'(na
Lotz lou %)
4 = u klb u [(x) - 1][Jn(ub) = H;l(ua) Hn(ub)]Hn(XD) . (F.SO)
Finally, using (F.42) in (F.47) yields
x g2 X
_ g2 Xy 1
T = F - .
on bu Xq - xlxu_l (F.51)
XZ - X5 +
3 XO

Up to this point, coefficients e Ben- Yen» Ten, Aep and Ben have
0 0 0 0 0 )
been determined. The remaining set of undertermined coefficients

consists of 3gqs ben, den, fen, Cen and Den and will be found in a
0

0 ) ) ) )
similar fashion as the previous set.

It is clear that (F.27) and (F.28) give

Jn(ua)
agn = - Hn(ua) dgn , (F.52)
b Jn(ua)
on = = ' f .
" Halua) (F.53)
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From (F.32), one will find

1 M oy 2

et A g S e Jha okt i ’ —

Dgn = () "~ Q;) [boan(ub) + fgndn(ub)]

e

J;(ua)

Ha(ua)
and from (F,29)

_jnh jnh
+

2

[} [} ]
- u[bgan(ub) + fgndn(ub)} + Dgann(kb)

But one gets from (F.30) that

jnh joh u 2

0

Employing (F.56) in (F.55) results in

234

H (ub) ]foq

(F.58)
e

[ __dnh
b LI, (D) + C%an(xb)] =Tk [agan(ub) + dgndn(ub)]

. (F.55)

b [Jn(xb) + Cean(xb)] = ;:g‘(;) [aean(ub) + dean(ub)] .
(o] 0

(F.56)

. (F.57)

T




Next, equating (F.54) and (F.57) and making use of (F.52) and (F.53)

produce
J
) " R (ua)
Ho0b) wy () 1,000 = e ry™ Wy (wb) Ifgy
1 E [ ' J Sua) 1
= H (%) X {{a, (ub) 4T va) Ha(#0) o
_ Jnh l.[ ‘jz 1[0 (b Jn(“a) .
Fhopw (G) - o, () - Ho(wa) Ml )]dgn}
which can be rewritten as
Xy
f = ¥ -—d L]
In = F X %en (F.58)

One can readily deduce from (F.56) and (F,52) that

1 ky e , Jn(ua)
Cen =} (x0) {-9,000) + 7 () [9,(wb) - e (va) Hn(ub)]dgn} .
(F.59)
Also, one can obtain from (F.31) that
w - wy - jnh 1 g k1 g
an " kaH (Ab) = " kzx{-an(xb) £ ko ngan(xb) t o kan
' ' o 22 jnh 1
. [agan(ub) + d%ndn(ub)] b 3 [bgan(ub) + fgndn(ub)]} .
(F.h0)
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Making use of (F.52), (F.53) and (F.54) will reduce (F.60) to :j
1 ' ¥2 joh 1oy 2 d
an " Hi (D) {-3,00) = T e LG - 1]
Jn(ua) up kyu
t [0 (0) - Gy M fon * L o "!
. Jolwa)
» [9,(ub) - WHn(ubHdgn} . (F.61)

Now if one equates (F.59) and (F.61), makes use of (F.58) and observes

[ [ .]2
that Jn(Xb)Hn(Ab) - Jn(kb)Hn(Xb) = — ., he will find that

mAb °?
Ky y Xy Xy j2 -
kz)‘{XZ-X3+X0}d8n—n)‘b 'ﬂ
or =
Fi
21
n " mb ‘ky’ w ,— X, X, - . (F.62)
X2 = X5 + |
3 XO |

So far all coefficients have been determined. However, they can be

,:‘.';i
<
simplified significantly. To facilitate the simplification process, -
it is convenient to define =
";'b\
o J,(na) .
F" Pn ™ 7y () (F.63)
o o
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and

Then

J;(ua)

= - H;(ua)

H;(Aa)

n = Hi(2a)

O
|

n = Jn(ub) + ann(ub)

= J,(ub) + q H (ub)

0
>
]

(%]
]

n Jn(ub) + ann(ub’)

—
1)

n - Jn(“b) + ann(ub) .

it can be shown that

Y2 u
Xg = [-Q, + a1 A FaToHn (AD)

y dnh 1l ou?
1= k0w ((5) = 1M 00)s

L I ko 2
(=57 9ptud) + ()

"; rnan(ub)]nn(xb)

Uy ' ko 2 u
Xq = [ul PH, (ub) - kl) X rnann(ub)]Hn(xb)

~nNy
U
>

3= [;:; P

H2

kp 2 u
+ ()7) % TnSalH,(2b)

jnhouz  u 2 Ha(b)
X4 kib u) [(X) 1 u Tn

_______
11111111
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(F.64)

(F.65)

(F.66)

(F.67)

(F.68)

(F.69)

(F.70)

(F.71)

(F.72)

(F.73)

(F.74)

(F.75)
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W0
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[

.

Pl

Y _ VY ¥ v VT
a3 A

Y2 nh P 1 w2 22
X = - Gaop) 32 [ - 1] HOw)s T (F.76)

Ho(Ab) 2
Xo(xz-x3) + XKy = [ | Y,
w2 k2 K22 w2
Yo = [-uQn * rnTn]-[-ul WP+ kl) N rnSn]
a loo) (G -1 sty (F.77)
X
j2 4
T, = %
_ 2nh 2 oy 2 Hn(2b) Th
(F.78)
2r'|h ‘u_Z E. 2 Tn
= w2 G - ()] Ho(Ab)Y_ (F.79)
g2 pXy) iz = )
A ( = = =
&n = by (X (Xy=Xg)4X X,) by | [H,(3b)/u]2Y, \ Tn o
- - (F.80)
238
e e T e L R

. e
rare

)
a

LY

L

)




| A,
(5
b
te.
(M
J2 w2 ko, 2 ul 1
! Yn - b b [-ul uPn + ( 1] A r‘nSn] Hn(Xb)Yn (F'Bl)
(-
S %n = 9T, (F.82)
r Bg" = Pn"n (F.83)
’ Aen = An (F.84)
0
J_(ab)
A = 2, .2 In
n "~ Hn(Xb) * (ul) A) Hn(xb) Yn (F.85)
Ben = * 8, (F.86)
8 o (2, 2 Snm
n- (kl) N H, (Ab) (F.87)
g" b ‘ky’ w2 [Hn(kb)/u]2 Yn " Un (F.88)
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1 _joh 1 _u_%_ 1 -y
=t nb (kl) u [(klb) )H (Xb)S ] [Hn(Xb)/u]Z Yn
2nh kp u 2 Sn g
N =t 2 (k§) 1 (x) ] Ho (AD)Y = tf (F.91)
)
o N
2nh Ky u 2 Sn 1 kp Sp -
fn = b2 (k%) [1 - ()‘) ] Hn(Xb)Yn = (uz) (kl) Tn Tn , (F.92) I—}J
é?

ben =t qnfn ’ (F.93)
0
=
Ce, = C , N
(e)n n (F094) ...}‘
wd

3, () ke u2 St

EE C = - H (b) * () Q) W {Ab) g (F.95)
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APPENDIX G
.
ON THE FUNCTION \/k2-h2
In solving electromagnetic problems that involve Fourier integrals,
one will encounter a multi-valued function of the form R
3 13
e ’

f(h) =‘/k2-h2 (G.1) i

where k = k'+jk" is the propagation constant and h = h'+jh" is the
integration variable going from -«» to », In addition, one may notice
that k'>0 and k">(0 for the e¥jut time variation. To ensure convergence
of the integrals one often finds it necessary to enforce the condition

e that

o s

Imf(h) >. 0 (6.2)

x4

- for the e*Jst time dependence. It turns out that condition (G.2) will

define the path of integration.

.......
...............



_va Letting f(h) = t'+jt", it is apparent that

fz(h) = kz-h’- = klz_kllz_h|2+hc|2+j2(klku_hlhn) = T.Z-T"Z"'jZT'T" .
(6.3) 2

Equating the imaginary parts of (G.3) gives

o _ K'k"-h'h" (6.8)

T TI L]

P
E Next, equating the ral parts of (G.3) and then employing (G.4) yield
kK'k"-h'h" 2
2 . [ —T.—— ] = kiz_klnz_h12+h||2 , (G.S)

which can be readily solved to obtain

g: koz_knz_h|2+hu2 2 2 172
:.'__ ' = {[( > ) + (klkn_hnhu) ]
- K'2_Kk"2_p'24h"2  1/2
+ 2 } . (G.6)

:

.
LR

a

It is clear that t' is always positive. Making use of this fact in

'—
v '..':": [ ]

M .

. A )

‘ . " . ‘. s a8 @ y
S I R
P I . R R

conjunction with (G.4) leads to the conclusion that

t

1. for t">0 on the path of integration (e-jut time dependence),

|, 2am et aom o

one can set h"=0 when k">0, and h'>.0, h"<,0 when k"=0;

Yo v vt
R R T )
]
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2. for 1"<0 on the path of integration (ejwt time dependence),

one can set h"=0 when k"<0, and h'>.0, h"<,0 when k"=0.

Typical paths of integration, each denoted by I', on which t">0 and

<0 when k"=0 are shown, respectively, in Figures G.1 and G.2.
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Figure G.1, Path of integration T in the h-plane and the analytic
properties of /k2-h2 when k"=0 (for e-Jut time dependence).

imh
A h— PLANE
1 !
- "

t'<0 v'>0
—k s L
— —» R h
-~ ) k .
r 8
>0 ' <0 ,
annnr BRANCH CUT -il
t" <0 ON ENTIRE TOP SHEET
N
. o4
-
o
Figure G.?2. Path of integration I in the h-plane and the analytic -
properties of \/k2-h? when k"=0 (for eJ®' tine dependence). ¢
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APPENDIX H

ON THE RATIOS Ppn/Spn AND Op/Tn

__.,.a
o .
D)

From Equations (3.11) -(3.14) and (3.116)-(3.117), it is apparent

/A RIS I s

A A

_ that

Po(8) . (ubJH_(wa)-J (a)H (ub)

i , (H.1)
Sn(u) Jn(ub)Hn(ua)-Jn(ua)Hn(ub)

s P

and

] On(u) J;(ub)H;(na)-J;(ua)H;(ub)

= ' ) . (H.?.)
T () o (b _(ua)-J (ua)H (ub)

o (1)

Since Hn(a) = Hn

function of order n, one can rewrite (H.1) and (H.2) as follows:

A il UETOR T

g

(g) = Jn(E) + an(g), where Yn(g) is the Neumann

[ ==Y 1 (]
. P,u) Jn(ub)Yn(ua)-Jn(ua)Yn(ub)
= Y ( H 3 3 )

] S, (u) Jn(ub)Yn(ua)-Jn(ua)Yn(ub)
and -
o]
L 245 -
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LK
B et

0,(1) 3 (ub)Y_(ua)-3 (ua)Y, (ub)

= ' ) . (H.4)
T (u) Jn(ub)Yn(ua)-Jn(ua)Yn(ub)

TR W |

By examining the ascending series for Jn and Yn [26], one will note that

e |

It-2) = (-1 (2) : (H.5)

and Y can be put in the form .

R 2 .
Yn(z) = Yn(z) + 7 1In % Jn(z) (H.6) =
where ?(z) has the property that ;(-z) = (-1)"?(2). Consequently, ;1
R 2 - .
Y (-2) = Y(-2) + 7 In (’%) Jn('Z) = (-1)" 7
|- 2z _ 7 ¥i
| Yo(2) + 710 7 0,(2) = j20 (2) . (H.7) .
|

Formally differentiating (H.5), (H.6) and (H.7) yields 1
J.(-2) = (-1 (2) (R.8) 'j

n n
}- 2|1 ’f—} GJ
(@) = [ Y (2) 45 | Z9(2) +1n 5 (2) | l : (H.9) -
At - al ? 1 ' [
Yn(—z) = (-1)n ! Yn(z) + ;“'; Jn(z) + 1In % Jn(z) l + jZJn(z) | . ﬁj
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1
It follows from (H.5)-(H.10) that
.. P (=n) -
R - 2
= LED™ N o)} (D" [V ) + 20 22 ()
Spl=w) | "
" . n o
; £ 329 (wa)]} - {(-1)"0 (wa)} {(-D)"7 [¥_(ub)
2, b 1
+7(In 37 J, (ub) +u_an(ub)) t j2J (ub)]} ‘
{ {(-1)an(ub)} [-n" [Y (va) + 7 1" 2 J,(ua) £ j29 (ua)]}
: I_
c 2w 7
n - H
- D"+ (DY (i) + 7 2, 7 0 (ub) 520 (ub) ]} |
‘ (D23, (b)Y, (ua) = I (ua)Y, (ub P ()
N W wa) - J_(wa)Y_(ub)} olu
= = - . (H.ll)
(-1)2" {9 (ub)Y_(ua) - I, (wa)¥ (wb)} S, ()
and
)
0 (-u)
= D™D o) 1D ) + 7 (53 9, (va)
Tolew)
- . J;(ua)) s jZJ:‘(ua)]} {(-n™? .(ua)}
- {(- 1)n1Y(ub)+" ubJ (ub) + 1In zbJ (ub)) "'f
J2J (ub) ,/l {(-1) J (ub {(- 1) [Y (ua)
. .
|
3 ]
-1
- e e R
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2 1 ua '
3 (W 9,(ma) +In 373 (wa)) ¢ 520 (ua)]}

-1 ~ 2
n ldn(ua)} . [(—1)n [Yn(ub) + 7 In %E'Jn(ub)

{(-1)

* JZJn(ub)]} i
D2 )Y a) - 3y o} o ()
(-l)zn'l{dn(ub)Y;(ua) - J;(ua)Yn(ub)} o T () .
(H.12)

Thus from (H.11) and (H.12), it is seen that both Pn/Sn and On/T are
n

odd functions of u.

< 9
,". . k“d
=
-9 3
= -3
= -
- >
A .
[

b -

. o
b‘ N

t =
. ]
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APPENDIX 1

CALCULATION OF CYLINDER FUNCTIONS: 3 , J , H , H
-;m n n n n

WIS |V @I

PN

It is well-known that all cylinder functions satisfy the following

recurrence relations:

e atadlibden s

2n

Cog(2) +C () =7 ¢c (), (1.1) ;
i
' !
]
Cn-l(z) Cn+1( ) = 2Cn(z) R (1.2) ;
]
.E where C denotes J, Y and H 3 H(l). Equation (I.1) indicates that any §
3
two known consecutuve members of a sequence {Cn(z)}: can be used to X
compute the entire sequence. Moreover, the corresponding sequence of »
%
. derivatives {C (z)} can be subsequently computed via (1.2). Thus it is ;
. sufficient to consider how to evaluate the sequences {Jn(z)}: and .
N
N .
{Hn(z)}0 only. N
From experience it is learned that the calculation of the sequence i
" {Jn(z)}g is stable numerically only if the recurrence relations are

applied downward, and unstahle otherwise. In addition, only a finite
sequence can be generated, i.e.,, N < », because of the limited dynamic

range of a digital computer,

,,,,,,,

- . St e
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One can verify that the sequence {BJn(z)}: satisfies (I.1) and -]

(I.2), where B is an arbitrary scalar. Next letting {Jn(z)}:+1 be such

a sequence that

JN(Z) = a > (1.4)

where a is some vénishing]y small number. The remainders of the

sequence are calculated using the recurrence relation (I.1) downward.

ot N N .
By setting {J (2)} = {83 (2)},, one finds J (z) = J _(2)/8, n=0,1,...,N,

~

and thus the sequence {Jn(z)}g will be determined as soon as 8 is known,
Noting 8 = Jn(z)/Jn(z), n=0,1,...,N, it is clear that B=Jo(z)/do(z)

is most easily determined since Jo(z) can be simply computed as follows:

1. when |z| < 8,

J (2) = § ——oT . (1.5)

where the series converges rapidly.

2. When |z| > 8, ‘;¥
1 ™ jzcose
Jol2) =7 | e’ ds . (1.6) -
0 E
where the integral is evaluated by Simpson's quadrature. o
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N
Once the sequence {Jn(z)}o is generated, one can immediately move

onto the calculation of the sequence {Hn(z)}g which is described below:

1. When |z| < 8, Lommel's formula [27, pp. 143] can be employed to

evaluate Yo(z):

- (Z/Z)ka(Z) l

Z
(Tog 2 + )9 (2) + ] kek! l , (1.7)
k=1

|
2
YO(Z) = x

1 1 1
where vy = 1im [1 + 2 + T+ .., + @ - Inm] = ,5772157 is known as Euler's
m+mo

constant. Next it follows from the Wronskian,

2
w{Jn(z),Yn(z)} = 9D (2) - 9 (2)Y . (2) = 37, n=0,1,2,...N-1,

n+l n+l

(1.8)

that the sequence {Yn(z)}g is readily determined. Finally, making use
of the relation H (z) = J (2) + an(Z). the sequence {Hn(l)}g is

obtained quite simply.

2. When |z| » 8, the sequence {Hn(z)}: is directly computed by

first evaluating Ho(z) via Hankel's asymptotic expansinns [267:

2 i(z-
Ho(2) ~ \fz [P(2)+a(2)] &2 (1.9)
where
2 2 2222
1.3 1.3.5.7
P(z) =1+ 2 + Wt oeee (1.10)
2! (8z2) 4!(8z)
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and
2 2 22 22222
(2) 1 13+5 103¢547+9
Q z = - 8_+ 3 - + oo (I.ll)
27 31(82) 51(82)° ’
then employing the Wronskian,
iz
W19 (2), Ho (D)} = 9 (2 (2) = 9 (2, (2) =57 . (1.12)

It must be mentioned that, as Imz+=, evaluating Jo(z) and Ho(z)
according to (I.6) and (I.9), respectively, will encounter severe num-
erical problems commonly known as computer floating-point overflow and
underflow, Such will prevent one to calculate the sequences {Jn(z)}:
and {Hn(z)}: accurately. A simple but effective way to handle these
problems is through the proper scaling of Jo(z) and Ho(z)’ and hence the
resulting sequences. This means that Jn(z) and Hn(z) are being modified

S

through multiplicative factors e and es, respectively, where s is some

~

appropriate positive real number, Letting {Jn(z)}: and {ﬁ;(z)}: be the

scaled sequences corresponding to {Jn(z)}: = {Hn(z)}:, one can write

O] = e 5, (fy = {3, 1, (1)
and

{ﬁ;(z>}§ = {ean(Z)}: , (1.14)
where

~

-s 1
Jolz) = e J,(2) =7

T jzcos9-s
é o’ s, (1.15)

and H (z) are computed sequentially according to the Wronskian,
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~

~ ~ ~ ~ ~ j2
W9, (2), B (2)} =0 (20K (2) - 9 (2)H . (2) = 3z, n=0,1,...,N-1,

(1.16)
with

Hy(2) = e (2) ~V/;§ [P(2) + jo(2)] 3 Z/8) ¥ 8 (1.17)

It is important to observe that the function W(n,h) in (4.83) is
independent of the scaling factors ets. This is obvious if one realizes

that (from Equations (4.88)-(4.92))

Ha(Ab)  Hn(Ab)

.- , (1.18)
Ha(Ab)  Hp(b)

o (ubIH (wa)-d (walH (wb) I (ub)A (ua)-J. (ua (ub)

T = = < = p ~ (1.19)
n Jn(ub)Hn(ua)-Jn(ua)Hn(ub) J, (ubIH (wa)-J (ualH (ub)

0 In(ubIH (ua)-d, (uadH (u) T (0)H,(va)-3, (wa)if (o)
= . . R B (1.20)
n Jn(ub)Hn(ua)-Jn(ua)Hn(ub) Jn(ub)Hn(ua)-Jn(ua)Hn(ub)
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APPENDIX J

ASYMPTOTIC FORM OF 0Q(v)

In this appendix, an asymptotic form of Q(v), defined by (5.50),
based on the NDebye approximations is derived. From (4.110) and (4.111),

1 1y
the Deybe approximations of Hiz)(g) and Hiz) () can be written as:

+j(/€2-v2 - v cos-1(v/E)-n/4)

1 2 e

Hiz)(i) ~ (£2-y2)1/4 ’ (J.1)
1., 1 T2 1

HSZ) (g) = a—z- HS)Z)(E) ~ % j EE > Hiz)(g) > (J.?-)

where |&|>|v|, |E-v|>|v1/3]|, and £ large. It follows that

I H5,1)

where

(2) #jF(v)
Hv e

(a)

(S)i 2
. - (aZ-vz)llk(Bz-vz)l/
(a) H, (B)l

[ [] (-].3)

2
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F(v) =,/32-v2 - «o?—vz + v(cos-l(v/u) - COS-I(V/B)] . (2.4)

Also,
[
W (y) St
() T~ i . (3.5
i D () Y )
= Employing (J.3) and (J.5) in Q(v) yields
= . <HF) _F() .

0(v) ~ 7 2 [T 2

. V@ A iF(v)]  dVY =v 1T 5 iF(v)
= § = ieJH”-+JH“”+-7—— LIFV) _ GF(V)]

(J.6)

Recalling that a = /El‘ k,a, B = /Er k,b, and 1 = kb, one can deduce

from (J.6) that

B 6 (e-IFV) ()}
Q(v) ~—— _
~. j €rk;-(\)/a)2 _e'jF(\’)*ejF(V)_‘.b \ A;_(v/a)z \—e'jF(V)_ ejF(V)—

(J.7)

where it is assumed that a>>(b-a) such that (v/b)=(v/a), It can he

I readily verified that (J.7) leads to

o
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-ky sinF(v)

Q(v) ~ A (J.8) -
\/Crkz-(V/a) cosF(v) - \/kz -(v/a)? sinF(v) N

which is used in (5.51). &
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APPENDIX K

THIN SUBSTRATE APPROXIMATINN OF Z,(h)

When a large cylinder of radius a is coated with an electrically

thin substrate, one will have

2 2
lub| = ’b erkz2-h

This permits one to approximate and hence simplify the complicated

>> 1 , |u(b-a)] = Jut| < 1. (K.1)

function Z,(h) defined in (5.47) as

Hil)(ua)Hs,z)'(ub) - H2) (ua)u(1)* (ub)

m|'o
<

- S -
Zv(h)--'°r v—-v/e_

r Hgl)(ua)HSZ)(ub) - Hsz)(ua)Hil)(ub)
(X.2)

1) (2)

. (
Denoting J_, Hv or Hv by Cv, one can Taylor expand Cv(ua) and

Cv(ua) about ub by taking the first two leading terms as follows:

Cylua) = C (ub) - utC_(ub)
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C;(ua) = C;(ub) - utC:(ub) . (x.4)

Since C, satisfies the Bessel differential equation, one can write

1 v?
C,(ub) = - o C,(ub) - 1 - (ub) ] € (ub) . (K.5)

Substituting (K.5) into (K.4) produces

' ' t 2
C(ua) = € Gub) [1 4] wut (1= (3) JC () . (x.6)

It may be pointed out that only (K.3), but not (K.5), is needed in

approximating Zy(h). This is clear when one observes that
(M) () -t (D) (40 JHED) () -
- [Hiz)(ub)-utHs)z) "(ub) ]Hs)l).(ub)

Zy(h) = - /5 ’
[%}NuM-MHG)WuM]%FNuM -

- () (ub)-uth(D)* (ub) JHED) ()

(K.7)
or
/er
Z(h) = -7 . (K.8)
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APPENDIX L
-
!
ROOTS OF P(o) = yw (a) - w (o) = 0
It is convenient to consider the roots of P as functions of y.
Formally differentiating P(c) = 0 with respect to y produces
= w do 1+ do

w1 (0) 4 yw (o) Mgy T O . (L.1)

Recalling that W, satisfies the Airy differential equation, one will
tt note

wi(o) = ow, (o) . (L.2)

It is also clear from the equation P(o) = 0 that

| wilo) =y (o) . (L.3)
- Employing (L.?) and (L.3) in (L.1) yields

= (o) {1+ [y20 -1 d9,

wi(o) [y?o -1} gt =0 . (L.4)
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One can easily derive from (L.4) the following non-linear differential

equation which governs the roots of P(o) = O:

dv - 2 . (L.5)

It is readily observed that y=0 if only if wl(o) = 0. Since w,

vanishes at

o=t = eJ"/_3t

D o s P =1,2,3,000, (L.6)

where Tp's are the zeros of Ai(-r) (Airy function), one sees that

o(0) = tp , p=1,2,3,... . (L.7)

It is then natural to denote the solution of (L.5) corresponding to the
intitial condition o(0) = tp by op(y), p = 1,2,3... .

dn
én) = a;ﬁ'cp(y), one can formally Taylor expand
oél)(y) about y=0 as follows:

Next letting o

1), . 5 SO
B W= LT oo (L.8)

(n)
p

following computations, unless specified otherwise. It is obvious

For notational simplicity the symbol o(") will mean o in the

from (L.5) that

Vo) = 1. (L.9)
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Dy = % - [ayo + MY (L.10)

oy =0 (L.11)

3 (y) = (200290 Vr2y0 Py 1[4 [2y08y 2001 261162
- 2e[s 1]’ {4y[°(1)]3+4y00(1)0(2)}+3y2[0(1)]20(2)

(L.12)

30y = 20(0)117% = 2t . (L.13)

() = 206V 24000 6D g ([6l1) 11 oD gy (3011 o2
b 1o 600 101 o3 hagy [V 1762
. 6),20(1)[(,(2)]2+3y2[°(1)]20(3)
_ 6{0(”]3+soa“’o(2’+y{zz[a‘1)]20(2)+4o[o(2)12+4m(1)a(3)}

2 2
v y2 (60 [o0B) ) a1 63y (L.18)

My =6 . (L.15)
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o9 () = 18(60] 6@ug[oV] oDuga[o(2) | 4800l V) o3 -
2
+ {22[0(1)] 0(2)+4a[c(2)]2+4cc(1)o(3)}+_y{44o(1)[0(2)]2
v 220D o0 0D [o2) Prgaql®) o3 g 411 of3) g
) S
+ 2002 a0V 6 4 2y (66t (o2 0351 ) 6(3))
v 2160012+ 12001 6(2) 43454 (1) (2D (331 (1) % (4 -
[y
= 48[0(1)]20(2)+120[o(2)]2+1200(1)o(3)+y{600(1)[0(2)]2
. 32“(1)fomﬂmm0(3>+4W(1> HCHWRITTS <1>} (4)
+ 6[0(2)]3+180(1)o(2)o(3)} s (L.16)
(-
E.i o5 (o) = 24t§ . (L.17) -~
x -~
L .
o
b
]
o .
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2 2
6(6)(Y) = 960(1)[0(2)] +48[o(1)] 0(3)+120(1)[o(2)]2+24oo(2)o(3)

(2) (3)

2
+ 12[0(1)] 0(3)+1200 o'~ '+1200

(1),(8), 50, 42

+ 32[0(1)]20(3)+1200(2)0(3)+400(1)0(4)}fy{60[0(2)]3

1200(1)0(2)0(3)+64c(1)0(2)0(3)+32[o(1)]20(4)+12[o(3)]20

+

+

120(1)0(2)0(3)+1200(2)0(4)+4[°(1)120(4)

+ 400(2)0(4)+4co(i)o(5)} + y{ﬁ[c(l)Jzo(4)+12[o(2)]3

+ 360(1)0(2)0(3)} + yz{...}

2

= 1680(1)[0(2)] +92{o(1)]20(3)+1600(1)0(4)+48oo(2)0(3)fy{72[o(2)]3

+ 2320(1)0(2)0(3)+120[0(3)]2+1600(2)6(4)+4oc(1)0(5)+42[c(1)]20(4)}

vy . (L.18)

p . (L.19)
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3
oMy = 168[6(2)) 433600 o(2) 6318051 52) (3 sgp 4 1)) o (8)

+ 16[5(1)]20(4)+1600(2)0(4)+1600(1)c(5)+480(1)0(2)0(3)

2

3
+ 280[0(®)] +480002) 61726 | 123261 6(2) 513 12006(3) |

+ 1600(2)0(4)+4oo(1)0(5)+42[c(1)]20(4)+y{...}+y2{

P

(L.20)

7
o (0) = 900 + 720t i (L.21)

Substituting (L.9), (L.11), (L.13), (L.15), (L.17), (L.19) and (L.21)

into (L.8), and recalling o(n)(y) = oén)(y), one obtains

(1) 2.3.24 1 5 3 6
=1+t +y +t + Tt + |t” + 5/4 P, .

o (¥) o WY Tyt x [ 5/4)

(L.22)
Integrating both sides of (L.?1) over the interval [o,y], one finally

arrives at

2

o()_t++32314£r>_5_7326
ply) =ty +ytay vy +T5 Y tig Y
3
' 5 7
+ [ 7 + 28 ] Y s P = 1:2’3"" . (L‘23)

n
The Tavlor series expansion (L.23) of the roots of yw;(o)-w,(c) =0

is most suitable when |y| << 1.
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